Metamath Proof Explorer


Theorem lincresunit3lem2

Description: Lemma 2 for lincresunit3 . (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincresunit3lem2 S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMzSXGzMz=FSXlinCMSX

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 simpl2 S𝒫BMLModXSFESFXUfinSupp0˙FMLMod
12 2 fveq2i BaseR=BaseScalarM
13 3 12 eqtri E=BaseScalarM
14 13 oveq1i ES=BaseScalarMS
15 14 eleq2i FESFBaseScalarMS
16 15 biimpi FESFBaseScalarMS
17 16 3ad2ant1 FESFXUfinSupp0˙FFBaseScalarMS
18 17 adantl S𝒫BMLModXSFESFXUfinSupp0˙FFBaseScalarMS
19 difssd S𝒫BMLModXSFESFXUfinSupp0˙FSXS
20 elmapssres FBaseScalarMSSXSFSXBaseScalarMSX
21 18 19 20 syl2anc S𝒫BMLModXSFESFXUfinSupp0˙FFSXBaseScalarMSX
22 elpwi S𝒫BaseMSBaseM
23 22 ssdifssd S𝒫BaseMSXBaseM
24 difexg S𝒫BaseMSXV
25 elpwg SXVSX𝒫BaseMSXBaseM
26 24 25 syl S𝒫BaseMSX𝒫BaseMSXBaseM
27 23 26 mpbird S𝒫BaseMSX𝒫BaseM
28 1 pweqi 𝒫B=𝒫BaseM
29 27 28 eleq2s S𝒫BSX𝒫BaseM
30 29 3ad2ant1 S𝒫BMLModXSSX𝒫BaseM
31 30 adantr S𝒫BMLModXSFESFXUfinSupp0˙FSX𝒫BaseM
32 lincval MLModFSXBaseScalarMSXSX𝒫BaseMFSXlinCMSX=MzSXFSXzMz
33 11 21 31 32 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FFSXlinCMSX=MzSXFSXzMz
34 simpll S𝒫BMLModXSFESFXUfinSupp0˙FzSXS𝒫BMLModXS
35 simplr1 S𝒫BMLModXSFESFXUfinSupp0˙FzSXFES
36 simplr2 S𝒫BMLModXSFESFXUfinSupp0˙FzSXFXU
37 simpr S𝒫BMLModXSFESFXUfinSupp0˙FzSXzSX
38 1 2 3 4 5 6 7 8 9 10 lincresunit3lem1 S𝒫BMLModXSFESFXUzSXNFXMGzMz=FzMz
39 34 35 36 37 38 syl13anc S𝒫BMLModXSFESFXUfinSupp0˙FzSXNFXMGzMz=FzMz
40 fvres zSXFSXz=Fz
41 40 adantl S𝒫BMLModXSFESFXUfinSupp0˙FzSXFSXz=Fz
42 41 eqcomd S𝒫BMLModXSFESFXUfinSupp0˙FzSXFz=FSXz
43 42 oveq1d S𝒫BMLModXSFESFXUfinSupp0˙FzSXFzMz=FSXzMz
44 39 43 eqtrd S𝒫BMLModXSFESFXUfinSupp0˙FzSXNFXMGzMz=FSXzMz
45 44 mpteq2dva S𝒫BMLModXSFESFXUfinSupp0˙FzSXNFXMGzMz=zSXFSXzMz
46 45 oveq2d S𝒫BMLModXSFESFXUfinSupp0˙FMzSXNFXMGzMz=MzSXFSXzMz
47 eqid +M=+M
48 eqid M=M
49 difexg S𝒫BSXV
50 49 3ad2ant1 S𝒫BMLModXSSXV
51 50 adantr S𝒫BMLModXSFESFXUfinSupp0˙FSXV
52 2 lmodfgrp MLModRGrp
53 52 3ad2ant2 S𝒫BMLModXSRGrp
54 53 adantr S𝒫BMLModXSFESRGrp
55 elmapi FESF:SE
56 ffvelcdm F:SEXSFXE
57 56 expcom XSF:SEFXE
58 57 3ad2ant3 S𝒫BMLModXSF:SEFXE
59 55 58 syl5com FESS𝒫BMLModXSFXE
60 59 impcom S𝒫BMLModXSFESFXE
61 3 7 grpinvcl RGrpFXENFXE
62 54 60 61 syl2anc S𝒫BMLModXSFESNFXE
63 62 3ad2antr1 S𝒫BMLModXSFESFXUfinSupp0˙FNFXE
64 11 adantr S𝒫BMLModXSFESFXUfinSupp0˙FzSXMLMod
65 1 2 3 4 5 6 7 8 9 10 lincresunit1 S𝒫BMLModXSFESFXUGESX
66 65 3adantr3 S𝒫BMLModXSFESFXUfinSupp0˙FGESX
67 elmapi GESXG:SXE
68 ffvelcdm G:SXEzSXGzE
69 68 ex G:SXEzSXGzE
70 66 67 69 3syl S𝒫BMLModXSFESFXUfinSupp0˙FzSXGzE
71 70 imp S𝒫BMLModXSFESFXUfinSupp0˙FzSXGzE
72 elpwi S𝒫BSB
73 eldifi zSXzS
74 ssel2 SBzSzB
75 74 expcom zSSBzB
76 73 75 syl zSXSBzB
77 72 76 syl5com S𝒫BzSXzB
78 77 3ad2ant1 S𝒫BMLModXSzSXzB
79 78 adantr S𝒫BMLModXSFESFXUfinSupp0˙FzSXzB
80 79 imp S𝒫BMLModXSFESFXUfinSupp0˙FzSXzB
81 1 2 48 3 lmodvscl MLModGzEzBGzMzB
82 64 71 80 81 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FzSXGzMzB
83 simp2 S𝒫BMLModXSMLMod
84 83 30 jca S𝒫BMLModXSMLModSX𝒫BaseM
85 84 adantr S𝒫BMLModXSFESFXUfinSupp0˙FMLModSX𝒫BaseM
86 1 2 3 4 5 6 7 8 9 10 lincresunit2 S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0˙G
87 86 5 breqtrdi S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0RG
88 2 3 scmfsupp MLModSX𝒫BaseMGESXfinSupp0RGfinSupp0MzSXGzMz
89 88 6 breqtrrdi MLModSX𝒫BaseMGESXfinSupp0RGfinSuppZzSXGzMz
90 85 66 87 89 syl3anc S𝒫BMLModXSFESFXUfinSupp0˙FfinSuppZzSXGzMz
91 1 2 3 6 47 48 11 51 63 82 90 gsumvsmul S𝒫BMLModXSFESFXUfinSupp0˙FMzSXNFXMGzMz=NFXMMzSXGzMz
92 33 46 91 3eqtr2rd S𝒫BMLModXSFESFXUfinSupp0˙FNFXMMzSXGzMz=FSXlinCMSX