| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  | 
						
							| 2 |  | 1cnd |  | 
						
							| 3 |  | relogcl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 | 4 | recnd |  | 
						
							| 6 |  | 1cnd |  | 
						
							| 7 |  | rpcnne0 |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | divdir |  | 
						
							| 10 | 5 6 8 9 | syl3anc |  | 
						
							| 11 | 10 | mpteq2dva |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 4 12 | rerpdivcld |  | 
						
							| 14 |  | rpreccl |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 15 | rpred |  | 
						
							| 17 | 8 | simpld |  | 
						
							| 18 | 17 | cxp1d |  | 
						
							| 19 | 18 | oveq2d |  | 
						
							| 20 | 19 | mpteq2dva |  | 
						
							| 21 |  | 1rp |  | 
						
							| 22 |  | cxploglim |  | 
						
							| 23 | 21 22 | mp1i |  | 
						
							| 24 | 20 23 | eqbrtrrd |  | 
						
							| 25 |  | ax-1cn |  | 
						
							| 26 |  | divrcnv |  | 
						
							| 27 | 25 26 | mp1i |  | 
						
							| 28 | 13 16 24 27 | rlimadd |  | 
						
							| 29 | 11 28 | eqbrtrd |  | 
						
							| 30 |  | 00id |  | 
						
							| 31 | 29 30 | breqtrdi |  | 
						
							| 32 |  | peano2re |  | 
						
							| 33 | 4 32 | syl |  | 
						
							| 34 | 33 12 | rerpdivcld |  | 
						
							| 35 | 34 | recnd |  | 
						
							| 36 |  | rprege0 |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | flge0nn0 |  | 
						
							| 39 |  | faccl |  | 
						
							| 40 | 37 38 39 | 3syl |  | 
						
							| 41 | 40 | nnrpd |  | 
						
							| 42 |  | relogcl |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 | 43 12 | rerpdivcld |  | 
						
							| 45 | 44 | recnd |  | 
						
							| 46 | 5 45 | subcld |  | 
						
							| 47 |  | logfacbnd3 |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 | 43 | recnd |  | 
						
							| 50 | 49 | adantrr |  | 
						
							| 51 | 7 | ad2antrl |  | 
						
							| 52 | 51 | simpld |  | 
						
							| 53 | 5 | adantrr |  | 
						
							| 54 |  | subcl |  | 
						
							| 55 | 53 25 54 | sylancl |  | 
						
							| 56 | 52 55 | mulcld |  | 
						
							| 57 | 50 56 | subcld |  | 
						
							| 58 | 57 | abscld |  | 
						
							| 59 | 4 | adantrr |  | 
						
							| 60 | 59 32 | syl |  | 
						
							| 61 |  | rpregt0 |  | 
						
							| 62 | 61 | ad2antrl |  | 
						
							| 63 |  | lediv1 |  | 
						
							| 64 | 58 60 62 63 | syl3anc |  | 
						
							| 65 | 48 64 | mpbid |  | 
						
							| 66 | 51 | simprd |  | 
						
							| 67 | 55 52 66 | divcan3d |  | 
						
							| 68 | 67 | oveq1d |  | 
						
							| 69 |  | divsubdir |  | 
						
							| 70 | 56 50 51 69 | syl3anc |  | 
						
							| 71 | 45 | adantrr |  | 
						
							| 72 |  | 1cnd |  | 
						
							| 73 | 53 71 72 | sub32d |  | 
						
							| 74 | 68 70 73 | 3eqtr4rd |  | 
						
							| 75 | 74 | fveq2d |  | 
						
							| 76 | 56 50 | subcld |  | 
						
							| 77 | 76 52 66 | absdivd |  | 
						
							| 78 | 56 50 | abssubd |  | 
						
							| 79 | 36 | ad2antrl |  | 
						
							| 80 |  | absid |  | 
						
							| 81 | 79 80 | syl |  | 
						
							| 82 | 78 81 | oveq12d |  | 
						
							| 83 | 75 77 82 | 3eqtrd |  | 
						
							| 84 | 35 | adantrr |  | 
						
							| 85 | 84 | subid1d |  | 
						
							| 86 | 85 | fveq2d |  | 
						
							| 87 |  | log1 |  | 
						
							| 88 |  | simprr |  | 
						
							| 89 | 12 | adantrr |  | 
						
							| 90 |  | logleb |  | 
						
							| 91 | 21 89 90 | sylancr |  | 
						
							| 92 | 88 91 | mpbid |  | 
						
							| 93 | 87 92 | eqbrtrrid |  | 
						
							| 94 | 59 93 | ge0p1rpd |  | 
						
							| 95 | 94 89 | rpdivcld |  | 
						
							| 96 |  | rprege0 |  | 
						
							| 97 |  | absid |  | 
						
							| 98 | 95 96 97 | 3syl |  | 
						
							| 99 | 86 98 | eqtrd |  | 
						
							| 100 | 65 83 99 | 3brtr4d |  | 
						
							| 101 | 1 2 31 35 46 100 | rlimsqzlem |  | 
						
							| 102 | 101 | mptru |  |