Metamath Proof Explorer


Theorem mamudir

Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mamucl.b B=BaseR
mamucl.r φRRing
mamudi.f F=RmaMulMNO
mamudi.m φMFin
mamudi.n φNFin
mamudi.o φOFin
mamudir.p +˙=+R
mamudir.x φXBM×N
mamudir.y φYBN×O
mamudir.z φZBN×O
Assertion mamudir φXFY+˙fZ=XFY+˙fXFZ

Proof

Step Hyp Ref Expression
1 mamucl.b B=BaseR
2 mamucl.r φRRing
3 mamudi.f F=RmaMulMNO
4 mamudi.m φMFin
5 mamudi.n φNFin
6 mamudi.o φOFin
7 mamudir.p +˙=+R
8 mamudir.x φXBM×N
9 mamudir.y φYBN×O
10 mamudir.z φZBN×O
11 ringcmn RRingRCMnd
12 2 11 syl φRCMnd
13 12 adantr φiMkORCMnd
14 5 adantr φiMkONFin
15 2 ad2antrr φiMkOjNRRing
16 elmapi XBM×NX:M×NB
17 8 16 syl φX:M×NB
18 17 ad2antrr φiMkOjNX:M×NB
19 simplrl φiMkOjNiM
20 simpr φiMkOjNjN
21 18 19 20 fovcdmd φiMkOjNiXjB
22 elmapi YBN×OY:N×OB
23 9 22 syl φY:N×OB
24 23 ad2antrr φiMkOjNY:N×OB
25 simplrr φiMkOjNkO
26 24 20 25 fovcdmd φiMkOjNjYkB
27 eqid R=R
28 1 27 ringcl RRingiXjBjYkBiXjRjYkB
29 15 21 26 28 syl3anc φiMkOjNiXjRjYkB
30 elmapi ZBN×OZ:N×OB
31 10 30 syl φZ:N×OB
32 31 ad2antrr φiMkOjNZ:N×OB
33 32 20 25 fovcdmd φiMkOjNjZkB
34 1 27 ringcl RRingiXjBjZkBiXjRjZkB
35 15 21 33 34 syl3anc φiMkOjNiXjRjZkB
36 eqid jNiXjRjYk=jNiXjRjYk
37 eqid jNiXjRjZk=jNiXjRjZk
38 1 7 13 14 29 35 36 37 gsummptfidmadd2 φiMkORjNiXjRjYk+˙fjNiXjRjZk=RjNiXjRjYk+˙RjNiXjRjZk
39 24 ffnd φiMkOjNYFnN×O
40 32 ffnd φiMkOjNZFnN×O
41 xpfi NFinOFinN×OFin
42 5 6 41 syl2anc φN×OFin
43 42 ad2antrr φiMkOjNN×OFin
44 opelxpi jNkOjkN×O
45 44 ancoms kOjNjkN×O
46 45 adantll iMkOjNjkN×O
47 46 adantll φiMkOjNjkN×O
48 fnfvof YFnN×OZFnN×ON×OFinjkN×OY+˙fZjk=Yjk+˙Zjk
49 39 40 43 47 48 syl22anc φiMkOjNY+˙fZjk=Yjk+˙Zjk
50 df-ov jY+˙fZk=Y+˙fZjk
51 df-ov jYk=Yjk
52 df-ov jZk=Zjk
53 51 52 oveq12i jYk+˙jZk=Yjk+˙Zjk
54 49 50 53 3eqtr4g φiMkOjNjY+˙fZk=jYk+˙jZk
55 54 oveq2d φiMkOjNiXjRjY+˙fZk=iXjRjYk+˙jZk
56 1 7 27 ringdi RRingiXjBjYkBjZkBiXjRjYk+˙jZk=iXjRjYk+˙iXjRjZk
57 15 21 26 33 56 syl13anc φiMkOjNiXjRjYk+˙jZk=iXjRjYk+˙iXjRjZk
58 55 57 eqtrd φiMkOjNiXjRjY+˙fZk=iXjRjYk+˙iXjRjZk
59 58 mpteq2dva φiMkOjNiXjRjY+˙fZk=jNiXjRjYk+˙iXjRjZk
60 eqidd φiMkOjNiXjRjYk=jNiXjRjYk
61 eqidd φiMkOjNiXjRjZk=jNiXjRjZk
62 14 29 35 60 61 offval2 φiMkOjNiXjRjYk+˙fjNiXjRjZk=jNiXjRjYk+˙iXjRjZk
63 59 62 eqtr4d φiMkOjNiXjRjY+˙fZk=jNiXjRjYk+˙fjNiXjRjZk
64 63 oveq2d φiMkORjNiXjRjY+˙fZk=RjNiXjRjYk+˙fjNiXjRjZk
65 2 adantr φiMkORRing
66 4 adantr φiMkOMFin
67 6 adantr φiMkOOFin
68 8 adantr φiMkOXBM×N
69 9 adantr φiMkOYBN×O
70 simprl φiMkOiM
71 simprr φiMkOkO
72 3 1 27 65 66 14 67 68 69 70 71 mamufv φiMkOiXFYk=RjNiXjRjYk
73 10 adantr φiMkOZBN×O
74 3 1 27 65 66 14 67 68 73 70 71 mamufv φiMkOiXFZk=RjNiXjRjZk
75 72 74 oveq12d φiMkOiXFYk+˙iXFZk=RjNiXjRjYk+˙RjNiXjRjZk
76 38 64 75 3eqtr4d φiMkORjNiXjRjY+˙fZk=iXFYk+˙iXFZk
77 ringmnd RRingRMnd
78 2 77 syl φRMnd
79 1 7 mndvcl RMndYBN×OZBN×OY+˙fZBN×O
80 78 9 10 79 syl3anc φY+˙fZBN×O
81 80 adantr φiMkOY+˙fZBN×O
82 3 1 27 65 66 14 67 68 81 70 71 mamufv φiMkOiXFY+˙fZk=RjNiXjRjY+˙fZk
83 1 2 3 4 5 6 8 9 mamucl φXFYBM×O
84 elmapi XFYBM×OXFY:M×OB
85 ffn XFY:M×OBXFYFnM×O
86 83 84 85 3syl φXFYFnM×O
87 86 adantr φiMkOXFYFnM×O
88 1 2 3 4 5 6 8 10 mamucl φXFZBM×O
89 elmapi XFZBM×OXFZ:M×OB
90 ffn XFZ:M×OBXFZFnM×O
91 88 89 90 3syl φXFZFnM×O
92 91 adantr φiMkOXFZFnM×O
93 xpfi MFinOFinM×OFin
94 4 6 93 syl2anc φM×OFin
95 94 adantr φiMkOM×OFin
96 opelxpi iMkOikM×O
97 96 adantl φiMkOikM×O
98 fnfvof XFYFnM×OXFZFnM×OM×OFinikM×OXFY+˙fXFZik=XFYik+˙XFZik
99 87 92 95 97 98 syl22anc φiMkOXFY+˙fXFZik=XFYik+˙XFZik
100 df-ov iXFY+˙fXFZk=XFY+˙fXFZik
101 df-ov iXFYk=XFYik
102 df-ov iXFZk=XFZik
103 101 102 oveq12i iXFYk+˙iXFZk=XFYik+˙XFZik
104 99 100 103 3eqtr4g φiMkOiXFY+˙fXFZk=iXFYk+˙iXFZk
105 76 82 104 3eqtr4d φiMkOiXFY+˙fZk=iXFY+˙fXFZk
106 105 ralrimivva φiMkOiXFY+˙fZk=iXFY+˙fXFZk
107 1 2 3 4 5 6 8 80 mamucl φXFY+˙fZBM×O
108 elmapi XFY+˙fZBM×OXFY+˙fZ:M×OB
109 ffn XFY+˙fZ:M×OBXFY+˙fZFnM×O
110 107 108 109 3syl φXFY+˙fZFnM×O
111 1 7 mndvcl RMndXFYBM×OXFZBM×OXFY+˙fXFZBM×O
112 78 83 88 111 syl3anc φXFY+˙fXFZBM×O
113 elmapi XFY+˙fXFZBM×OXFY+˙fXFZ:M×OB
114 ffn XFY+˙fXFZ:M×OBXFY+˙fXFZFnM×O
115 112 113 114 3syl φXFY+˙fXFZFnM×O
116 eqfnov2 XFY+˙fZFnM×OXFY+˙fXFZFnM×OXFY+˙fZ=XFY+˙fXFZiMkOiXFY+˙fZk=iXFY+˙fXFZk
117 110 115 116 syl2anc φXFY+˙fZ=XFY+˙fXFZiMkOiXFY+˙fZk=iXFY+˙fXFZk
118 106 117 mpbird φXFY+˙fZ=XFY+˙fXFZ