Metamath Proof Explorer


Theorem mdegleb

Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses mdegval.d D=ImDegR
mdegval.p P=ImPolyR
mdegval.b B=BaseP
mdegval.z 0˙=0R
mdegval.a A=m0I|m-1Fin
mdegval.h H=hAfldh
Assertion mdegleb FBG*DFGxAG<HxFx=0˙

Proof

Step Hyp Ref Expression
1 mdegval.d D=ImDegR
2 mdegval.p P=ImPolyR
3 mdegval.b B=BaseP
4 mdegval.z 0˙=0R
5 mdegval.a A=m0I|m-1Fin
6 mdegval.h H=hAfldh
7 1 2 3 4 5 6 mdegval FBDF=supHFsupp0˙*<
8 7 adantr FBG*DF=supHFsupp0˙*<
9 8 breq1d FBG*DFGsupHFsupp0˙*<G
10 imassrn HFsupp0˙ranH
11 5 6 tdeglem1 H:A0
12 11 a1i FBG*H:A0
13 12 frnd FBG*ranH0
14 nn0ssre 0
15 ressxr *
16 14 15 sstri 0*
17 13 16 sstrdi FBG*ranH*
18 10 17 sstrid FBG*HFsupp0˙*
19 supxrleub HFsupp0˙*G*supHFsupp0˙*<GyHFsupp0˙yG
20 18 19 sylancom FBG*supHFsupp0˙*<GyHFsupp0˙yG
21 12 ffnd FBG*HFnA
22 suppssdm Fsupp0˙domF
23 eqid BaseR=BaseR
24 simpl FBG*FB
25 2 23 3 5 24 mplelf FBG*F:ABaseR
26 22 25 fssdm FBG*Fsupp0˙A
27 breq1 y=HxyGHxG
28 27 ralima HFnAFsupp0˙AyHFsupp0˙yGxsupp0˙FHxG
29 21 26 28 syl2anc FBG*yHFsupp0˙yGxsupp0˙FHxG
30 25 ffnd FBG*FFnA
31 4 fvexi 0˙V
32 31 a1i FBG*0˙V
33 elsuppfng FFnAFB0˙Vxsupp0˙FxAFx0˙
34 30 24 32 33 syl3anc FBG*xsupp0˙FxAFx0˙
35 fvex FxV
36 35 biantrur Fx0˙FxVFx0˙
37 eldifsn FxV0˙FxVFx0˙
38 36 37 bitr4i Fx0˙FxV0˙
39 38 anbi2i xAFx0˙xAFxV0˙
40 34 39 bitrdi FBG*xsupp0˙FxAFxV0˙
41 40 imbi1d FBG*xsupp0˙FHxGxAFxV0˙HxG
42 impexp xAFxV0˙HxGxAFxV0˙HxG
43 con34b FxV0˙HxG¬HxG¬FxV0˙
44 simplr FBG*xAG*
45 12 ffvelcdmda FBG*xAHx0
46 16 45 sselid FBG*xAHx*
47 xrltnle G*Hx*G<Hx¬HxG
48 44 46 47 syl2anc FBG*xAG<Hx¬HxG
49 48 bicomd FBG*xA¬HxGG<Hx
50 ianor ¬FxVFx0˙¬FxV¬Fx0˙
51 50 37 xchnxbir ¬FxV0˙¬FxV¬Fx0˙
52 orcom ¬FxV¬Fx0˙¬Fx0˙¬FxV
53 35 notnoti ¬¬FxV
54 53 biorfi ¬Fx0˙¬Fx0˙¬FxV
55 nne ¬Fx0˙Fx=0˙
56 52 54 55 3bitr2i ¬FxV¬Fx0˙Fx=0˙
57 56 a1i FBG*xA¬FxV¬Fx0˙Fx=0˙
58 51 57 bitrid FBG*xA¬FxV0˙Fx=0˙
59 49 58 imbi12d FBG*xA¬HxG¬FxV0˙G<HxFx=0˙
60 43 59 bitrid FBG*xAFxV0˙HxGG<HxFx=0˙
61 60 pm5.74da FBG*xAFxV0˙HxGxAG<HxFx=0˙
62 42 61 bitrid FBG*xAFxV0˙HxGxAG<HxFx=0˙
63 41 62 bitrd FBG*xsupp0˙FHxGxAG<HxFx=0˙
64 63 ralbidv2 FBG*xsupp0˙FHxGxAG<HxFx=0˙
65 29 64 bitrd FBG*yHFsupp0˙yGxAG<HxFx=0˙
66 9 20 65 3bitrd FBG*DFGxAG<HxFx=0˙