Metamath Proof Explorer


Theorem measdivcst

Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016) (Revised by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion measdivcst MmeasuresSA+Mfc÷𝑒AmeasuresS

Proof

Step Hyp Ref Expression
1 ofcfval3 MmeasuresSA+Mfc÷𝑒A=xdomMMx÷𝑒A
2 measfrge0 MmeasuresSM:S0+∞
3 2 fdmd MmeasuresSdomM=S
4 3 adantr MmeasuresSA+domM=S
5 4 mpteq1d MmeasuresSA+xdomMMx÷𝑒A=xSMx÷𝑒A
6 1 5 eqtrd MmeasuresSA+Mfc÷𝑒A=xSMx÷𝑒A
7 measvxrge0 MmeasuresSxSMx0+∞
8 7 adantlr MmeasuresSA+xSMx0+∞
9 simplr MmeasuresSA+xSA+
10 8 9 xrpxdivcld MmeasuresSA+xSMx÷𝑒A0+∞
11 10 fmpttd MmeasuresSA+xSMx÷𝑒A:S0+∞
12 measbase MmeasuresSSransigAlgebra
13 0elsiga SransigAlgebraS
14 12 13 syl MmeasuresSS
15 14 adantr MmeasuresSA+S
16 ovex M÷𝑒AV
17 fveq2 x=Mx=M
18 17 oveq1d x=Mx÷𝑒A=M÷𝑒A
19 eqid xSMx÷𝑒A=xSMx÷𝑒A
20 18 19 fvmptg SM÷𝑒AVxSMx÷𝑒A=M÷𝑒A
21 15 16 20 sylancl MmeasuresSA+xSMx÷𝑒A=M÷𝑒A
22 measvnul MmeasuresSM=0
23 22 oveq1d MmeasuresSM÷𝑒A=0÷𝑒A
24 xdiv0rp A+0÷𝑒A=0
25 23 24 sylan9eq MmeasuresSA+M÷𝑒A=0
26 21 25 eqtrd MmeasuresSA+xSMx÷𝑒A=0
27 simpll MmeasuresSA+y𝒫SyωDisjzyzMmeasuresSA+
28 simplr MmeasuresSA+y𝒫SyωDisjzyzy𝒫S
29 simprl MmeasuresSA+y𝒫SyωDisjzyzyω
30 simprr MmeasuresSA+y𝒫SyωDisjzyzDisjzyz
31 vex yV
32 31 a1i MmeasuresSA+y𝒫SyV
33 simplll MmeasuresSA+y𝒫SzyMmeasuresS
34 velpw y𝒫SyS
35 ssel2 ySzyzS
36 34 35 sylanb y𝒫SzyzS
37 36 adantll MmeasuresSA+y𝒫SzyzS
38 measvxrge0 MmeasuresSzSMz0+∞
39 33 37 38 syl2anc MmeasuresSA+y𝒫SzyMz0+∞
40 simplr MmeasuresSA+y𝒫SA+
41 32 39 40 esumdivc MmeasuresSA+y𝒫S*zyMz÷𝑒A=*zyMz÷𝑒A
42 41 3ad2antr1 MmeasuresSA+y𝒫SyωDisjzyz*zyMz÷𝑒A=*zyMz÷𝑒A
43 12 ad2antrr MmeasuresSA+y𝒫SyωDisjzyzSransigAlgebra
44 simpr1 MmeasuresSA+y𝒫SyωDisjzyzy𝒫S
45 simpr2 MmeasuresSA+y𝒫SyωDisjzyzyω
46 sigaclcu SransigAlgebray𝒫SyωyS
47 43 44 45 46 syl3anc MmeasuresSA+y𝒫SyωDisjzyzyS
48 fveq2 x=yMx=My
49 48 oveq1d x=yMx÷𝑒A=My÷𝑒A
50 ovex Mx÷𝑒AV
51 49 19 50 fvmpt3i ySxSMx÷𝑒Ay=My÷𝑒A
52 47 51 syl MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=My÷𝑒A
53 simpll MmeasuresSA+y𝒫SyωDisjzyzMmeasuresS
54 simpr3 MmeasuresSA+y𝒫SyωDisjzyzDisjzyz
55 measvun MmeasuresSy𝒫SyωDisjzyzMy=*zyMz
56 53 44 45 54 55 syl112anc MmeasuresSA+y𝒫SyωDisjzyzMy=*zyMz
57 56 oveq1d MmeasuresSA+y𝒫SyωDisjzyzMy÷𝑒A=*zyMz÷𝑒A
58 52 57 eqtrd MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyMz÷𝑒A
59 fveq2 x=zMx=Mz
60 59 oveq1d x=zMx÷𝑒A=Mz÷𝑒A
61 60 19 50 fvmpt3i zSxSMx÷𝑒Az=Mz÷𝑒A
62 36 61 syl y𝒫SzyxSMx÷𝑒Az=Mz÷𝑒A
63 62 esumeq2dv y𝒫S*zyxSMx÷𝑒Az=*zyMz÷𝑒A
64 44 63 syl MmeasuresSA+y𝒫SyωDisjzyz*zyxSMx÷𝑒Az=*zyMz÷𝑒A
65 42 58 64 3eqtr4d MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
66 27 28 29 30 65 syl13anc MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
67 66 ex MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
68 67 ralrimiva MmeasuresSA+y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
69 ismeas SransigAlgebraxSMx÷𝑒AmeasuresSxSMx÷𝑒A:S0+∞xSMx÷𝑒A=0y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
70 12 69 syl MmeasuresSxSMx÷𝑒AmeasuresSxSMx÷𝑒A:S0+∞xSMx÷𝑒A=0y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒Az
71 70 biimprd MmeasuresSxSMx÷𝑒A:S0+∞xSMx÷𝑒A=0y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒AzxSMx÷𝑒AmeasuresS
72 71 adantr MmeasuresSA+xSMx÷𝑒A:S0+∞xSMx÷𝑒A=0y𝒫SyωDisjzyzxSMx÷𝑒Ay=*zyxSMx÷𝑒AzxSMx÷𝑒AmeasuresS
73 11 26 68 72 mp3and MmeasuresSA+xSMx÷𝑒AmeasuresS
74 6 73 eqeltrd MmeasuresSA+Mfc÷𝑒AmeasuresS