Metamath Proof Explorer


Theorem mendassa

Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses mendassa.a A = MEndo M
mendassa.s S = Scalar M
Assertion mendassa M LMod S CRing A AssAlg

Proof

Step Hyp Ref Expression
1 mendassa.a A = MEndo M
2 mendassa.s S = Scalar M
3 1 mendbas M LMHom M = Base A
4 3 a1i M LMod S CRing M LMHom M = Base A
5 1 2 mendsca S = Scalar A
6 5 a1i M LMod S CRing S = Scalar A
7 eqidd M LMod S CRing Base S = Base S
8 eqidd M LMod S CRing A = A
9 eqidd M LMod S CRing A = A
10 1 2 mendlmod M LMod S CRing A LMod
11 1 mendring M LMod A Ring
12 11 adantr M LMod S CRing A Ring
13 simpr M LMod S CRing S CRing
14 simpr3 M LMod S CRing x Base S y M LMHom M z M LMHom M z M LMHom M
15 eqid Base M = Base M
16 15 15 lmhmf z M LMHom M z : Base M Base M
17 14 16 syl M LMod S CRing x Base S y M LMHom M z M LMHom M z : Base M Base M
18 17 ffvelrnda M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M z v Base M
19 17 feqmptd M LMod S CRing x Base S y M LMHom M z M LMHom M z = v Base M z v
20 simpr1 M LMod S CRing x Base S y M LMHom M z M LMHom M x Base S
21 simpr2 M LMod S CRing x Base S y M LMHom M z M LMHom M y M LMHom M
22 eqid M = M
23 eqid Base S = Base S
24 eqid A = A
25 1 22 3 2 23 15 24 mendvsca x Base S y M LMHom M x A y = Base M × x M f y
26 20 21 25 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y = Base M × x M f y
27 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M Base M V
28 simplr1 M LMod S CRing x Base S y M LMHom M z M LMHom M w Base M x Base S
29 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M w Base M y w V
30 fconstmpt Base M × x = w Base M x
31 30 a1i M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x = w Base M x
32 15 15 lmhmf y M LMHom M y : Base M Base M
33 21 32 syl M LMod S CRing x Base S y M LMHom M z M LMHom M y : Base M Base M
34 33 feqmptd M LMod S CRing x Base S y M LMHom M z M LMHom M y = w Base M y w
35 27 28 29 31 34 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y = w Base M x M y w
36 26 35 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M x A y = w Base M x M y w
37 fveq2 w = z v y w = y z v
38 37 oveq2d w = z v x M y w = x M y z v
39 18 19 36 38 fmptco M LMod S CRing x Base S y M LMHom M z M LMHom M x A y z = v Base M x M y z v
40 simplr1 M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M x Base S
41 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y z v V
42 fconstmpt Base M × x = v Base M x
43 42 a1i M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x = v Base M x
44 eqid A = A
45 1 3 44 mendmulr y M LMHom M z M LMHom M y A z = y z
46 21 14 45 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A z = y z
47 fcompt y : Base M Base M z : Base M Base M y z = v Base M y z v
48 33 17 47 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y z = v Base M y z v
49 46 48 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M y A z = v Base M y z v
50 27 40 41 43 49 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y A z = v Base M x M y z v
51 39 50 eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y z = Base M × x M f y A z
52 10 adantr M LMod S CRing x Base S y M LMHom M z M LMHom M A LMod
53 3 5 24 23 lmodvscl A LMod x Base S y M LMHom M x A y M LMHom M
54 52 20 21 53 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y M LMHom M
55 1 3 44 mendmulr x A y M LMHom M z M LMHom M x A y A z = x A y z
56 54 14 55 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = x A y z
57 12 adantr M LMod S CRing x Base S y M LMHom M z M LMHom M A Ring
58 3 44 ringcl A Ring y M LMHom M z M LMHom M y A z M LMHom M
59 57 21 14 58 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A z M LMHom M
60 1 22 3 2 23 15 24 mendvsca x Base S y A z M LMHom M x A y A z = Base M × x M f y A z
61 20 59 60 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = Base M × x M f y A z
62 51 56 61 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = x A y A z
63 simplr2 M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y M LMHom M
64 2 23 15 22 22 lmhmlin y M LMHom M x Base S z v Base M y x M z v = x M y z v
65 63 40 18 64 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y x M z v = x M y z v
66 65 mpteq2dva M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y x M z v = v Base M x M y z v
67 simplll M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M M LMod
68 15 2 22 23 lmodvscl M LMod x Base S z v Base M x M z v Base M
69 67 40 18 68 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M x M z v Base M
70 1 22 3 2 23 15 24 mendvsca x Base S z M LMHom M x A z = Base M × x M f z
71 20 14 70 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A z = Base M × x M f z
72 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M z v V
73 27 40 72 43 19 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f z = v Base M x M z v
74 71 73 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M x A z = v Base M x M z v
75 fveq2 w = x M z v y w = y x M z v
76 69 74 34 75 fmptco M LMod S CRing x Base S y M LMHom M z M LMHom M y x A z = v Base M y x M z v
77 66 76 50 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M y x A z = Base M × x M f y A z
78 3 5 24 23 lmodvscl A LMod x Base S z M LMHom M x A z M LMHom M
79 52 20 14 78 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A z M LMHom M
80 1 3 44 mendmulr y M LMHom M x A z M LMHom M y A x A z = y x A z
81 21 79 80 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A x A z = y x A z
82 77 81 61 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M y A x A z = x A y A z
83 4 6 7 8 9 10 12 13 62 82 isassad M LMod S CRing A AssAlg