Metamath Proof Explorer


Theorem minveclem6

Description: Lemma for minvec . Any minimal point is less than S away from A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
Assertion minveclem6 φxYADx2S2+0yYNA-˙xNA-˙y

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 11 oveqi ADx=AdistUX×Xx
13 7 adantr φxYAX
14 eqid LSubSpU=LSubSpU
15 1 14 lssss YLSubSpUYX
16 5 15 syl φYX
17 16 sselda φxYxX
18 13 17 ovresd φxYAdistUX×Xx=AdistUx
19 12 18 eqtrid φxYADx=AdistUx
20 cphngp UCPreHilUNrmGrp
21 4 20 syl φUNrmGrp
22 21 adantr φxYUNrmGrp
23 eqid distU=distU
24 3 1 2 23 ngpds UNrmGrpAXxXAdistUx=NA-˙x
25 22 13 17 24 syl3anc φxYAdistUx=NA-˙x
26 19 25 eqtrd φxYADx=NA-˙x
27 26 oveq1d φxYADx2=NA-˙x2
28 1 2 3 4 5 6 7 8 9 minveclem1 φRRwR0w
29 28 adantr φxYRRwR0w
30 29 simp1d φxYR
31 29 simp2d φxYR
32 0red φxY0
33 29 simp3d φxYwR0w
34 breq1 x=0xw0w
35 34 ralbidv x=0wRxwwR0w
36 35 rspcev 0wR0wxwRxw
37 32 33 36 syl2anc φxYxwRxw
38 infrecl RRxwRxwsupR<
39 30 31 37 38 syl3anc φxYsupR<
40 10 39 eqeltrid φxYS
41 40 resqcld φxYS2
42 41 recnd φxYS2
43 42 addridd φxYS2+0=S2
44 27 43 breq12d φxYADx2S2+0NA-˙x2S2
45 cphlmod UCPreHilULMod
46 4 45 syl φULMod
47 46 adantr φxYULMod
48 1 2 lmodvsubcl ULModAXxXA-˙xX
49 47 13 17 48 syl3anc φxYA-˙xX
50 1 3 nmcl UNrmGrpA-˙xXNA-˙x
51 22 49 50 syl2anc φxYNA-˙x
52 1 3 nmge0 UNrmGrpA-˙xX0NA-˙x
53 22 49 52 syl2anc φxY0NA-˙x
54 infregelb RRxwRxw00supR<wR0w
55 30 31 37 32 54 syl31anc φxY0supR<wR0w
56 33 55 mpbird φxY0supR<
57 56 10 breqtrrdi φxY0S
58 51 40 53 57 le2sqd φxYNA-˙xSNA-˙x2S2
59 10 breq2i NA-˙xSNA-˙xsupR<
60 infregelb RRxwRxwNA-˙xNA-˙xsupR<wRNA-˙xw
61 30 31 37 51 60 syl31anc φxYNA-˙xsupR<wRNA-˙xw
62 59 61 bitrid φxYNA-˙xSwRNA-˙xw
63 44 58 62 3bitr2d φxYADx2S2+0wRNA-˙xw
64 9 raleqi wRNA-˙xwwranyYNA-˙yNA-˙xw
65 fvex NA-˙yV
66 65 rgenw yYNA-˙yV
67 eqid yYNA-˙y=yYNA-˙y
68 breq2 w=NA-˙yNA-˙xwNA-˙xNA-˙y
69 67 68 ralrnmptw yYNA-˙yVwranyYNA-˙yNA-˙xwyYNA-˙xNA-˙y
70 66 69 ax-mp wranyYNA-˙yNA-˙xwyYNA-˙xNA-˙y
71 64 70 bitri wRNA-˙xwyYNA-˙xNA-˙y
72 63 71 bitrdi φxYADx2S2+0yYNA-˙xNA-˙y