Metamath Proof Explorer


Theorem monotuz

Description: A function defined on an upper set of integers which increases at every adjacent pair is globally strictly monotonic by induction. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Hypotheses monotuz.1 φyHF<G
monotuz.2 φxHC
monotuz.3 H=I
monotuz.4 x=y+1C=G
monotuz.5 x=yC=F
monotuz.6 x=AC=D
monotuz.7 x=BC=E
Assertion monotuz φAHBHA<BD<E

Proof

Step Hyp Ref Expression
1 monotuz.1 φyHF<G
2 monotuz.2 φxHC
3 monotuz.3 H=I
4 monotuz.4 x=y+1C=G
5 monotuz.5 x=yC=F
6 monotuz.6 x=AC=D
7 monotuz.7 x=BC=E
8 csbeq1 a=ba/xC=b/xC
9 csbeq1 a=Aa/xC=A/xC
10 csbeq1 a=Ba/xC=B/xC
11 uzssz I
12 zssre
13 11 12 sstri I
14 3 13 eqsstri H
15 nfv xφaH
16 nfcsb1v _xa/xC
17 16 nfel1 xa/xC
18 15 17 nfim xφaHa/xC
19 eleq1 x=axHaH
20 19 anbi2d x=aφxHφaH
21 csbeq1a x=aC=a/xC
22 21 eleq1d x=aCa/xC
23 20 22 imbi12d x=aφxHCφaHa/xC
24 18 23 2 chvarfv φaHa/xC
25 simpl φaHa<bφaH
26 25 adantlrr φaHbHa<bφaH
27 3 11 eqsstri H
28 simplrl φaHbHa<baH
29 27 28 sselid φaHbHa<ba
30 simplrr φaHbHa<bbH
31 27 30 sselid φaHbHa<bb
32 simpr φaHbHa<ba<b
33 csbeq1 c=a+1c/xC=a+1/xC
34 33 breq2d c=a+1a/xC<c/xCa/xC<a+1/xC
35 34 imbi2d c=a+1φaHa/xC<c/xCφaHa/xC<a+1/xC
36 csbeq1 c=dc/xC=d/xC
37 36 breq2d c=da/xC<c/xCa/xC<d/xC
38 37 imbi2d c=dφaHa/xC<c/xCφaHa/xC<d/xC
39 csbeq1 c=d+1c/xC=d+1/xC
40 39 breq2d c=d+1a/xC<c/xCa/xC<d+1/xC
41 40 imbi2d c=d+1φaHa/xC<c/xCφaHa/xC<d+1/xC
42 csbeq1 c=bc/xC=b/xC
43 42 breq2d c=ba/xC<c/xCa/xC<b/xC
44 43 imbi2d c=bφaHa/xC<c/xCφaHa/xC<b/xC
45 eleq1 y=ayHaH
46 45 anbi2d y=aφyHφaH
47 vex yV
48 47 5 csbie y/xC=F
49 csbeq1 y=ay/xC=a/xC
50 48 49 eqtr3id y=aF=a/xC
51 ovex y+1V
52 51 4 csbie y+1/xC=G
53 oveq1 y=ay+1=a+1
54 53 csbeq1d y=ay+1/xC=a+1/xC
55 52 54 eqtr3id y=aG=a+1/xC
56 50 55 breq12d y=aF<Ga/xC<a+1/xC
57 46 56 imbi12d y=aφyHF<GφaHa/xC<a+1/xC
58 57 1 vtoclg aφaHa/xC<a+1/xC
59 24 3ad2ant2 ada<dφaHa/xC<d/xCa/xC
60 simp2l ada<dφaHa/xC<d/xCφ
61 zre aa
62 61 3ad2ant1 ada<da
63 zre dd
64 63 3ad2ant2 ada<dd
65 simp3 ada<da<d
66 62 64 65 ltled ada<dad
67 66 3ad2ant1 ada<dφaHa/xC<d/xCad
68 simp11 ada<dφaHa/xC<d/xCa
69 simp12 ada<dφaHa/xC<d/xCd
70 eluz addaad
71 68 69 70 syl2anc ada<dφaHa/xC<d/xCdaad
72 67 71 mpbird ada<dφaHa/xC<d/xCda
73 simp2r ada<dφaHa/xC<d/xCaH
74 73 3 eleqtrdi ada<dφaHa/xC<d/xCaI
75 uztrn daaIdI
76 72 74 75 syl2anc ada<dφaHa/xC<d/xCdI
77 76 3 eleqtrrdi ada<dφaHa/xC<d/xCdH
78 nfv xφdH
79 nfcsb1v _xd/xC
80 79 nfel1 xd/xC
81 78 80 nfim xφdHd/xC
82 eleq1 x=dxHdH
83 82 anbi2d x=dφxHφdH
84 csbeq1a x=dC=d/xC
85 84 eleq1d x=dCd/xC
86 83 85 imbi12d x=dφxHCφdHd/xC
87 81 86 2 chvarfv φdHd/xC
88 60 77 87 syl2anc ada<dφaHa/xC<d/xCd/xC
89 peano2uz dId+1I
90 76 89 syl ada<dφaHa/xC<d/xCd+1I
91 90 3 eleqtrrdi ada<dφaHa/xC<d/xCd+1H
92 nfv xφd+1H
93 nfcsb1v _xd+1/xC
94 93 nfel1 xd+1/xC
95 92 94 nfim xφd+1Hd+1/xC
96 ovex d+1V
97 eleq1 x=d+1xHd+1H
98 97 anbi2d x=d+1φxHφd+1H
99 csbeq1a x=d+1C=d+1/xC
100 99 eleq1d x=d+1Cd+1/xC
101 98 100 imbi12d x=d+1φxHCφd+1Hd+1/xC
102 95 96 101 2 vtoclf φd+1Hd+1/xC
103 60 91 102 syl2anc ada<dφaHa/xC<d/xCd+1/xC
104 simp3 ada<dφaHa/xC<d/xCa/xC<d/xC
105 nfv yφdHd/xC<d+1/xC
106 eleq1 y=dyHdH
107 106 anbi2d y=dφyHφdH
108 csbeq1 y=dy/xC=d/xC
109 48 108 eqtr3id y=dF=d/xC
110 oveq1 y=dy+1=d+1
111 110 csbeq1d y=dy+1/xC=d+1/xC
112 52 111 eqtr3id y=dG=d+1/xC
113 109 112 breq12d y=dF<Gd/xC<d+1/xC
114 107 113 imbi12d y=dφyHF<GφdHd/xC<d+1/xC
115 105 114 1 chvarfv φdHd/xC<d+1/xC
116 60 77 115 syl2anc ada<dφaHa/xC<d/xCd/xC<d+1/xC
117 59 88 103 104 116 lttrd ada<dφaHa/xC<d/xCa/xC<d+1/xC
118 117 3exp ada<dφaHa/xC<d/xCa/xC<d+1/xC
119 118 a2d ada<dφaHa/xC<d/xCφaHa/xC<d+1/xC
120 35 38 41 44 58 119 uzind2 aba<bφaHa/xC<b/xC
121 29 31 32 120 syl3anc φaHbHa<bφaHa/xC<b/xC
122 26 121 mpd φaHbHa<ba/xC<b/xC
123 122 ex φaHbHa<ba/xC<b/xC
124 8 9 10 14 24 123 ltord1 φAHBHA<BA/xC<B/xC
125 nfcvd AH_xD
126 125 6 csbiegf AHA/xC=D
127 nfcvd BH_xE
128 127 7 csbiegf BHB/xC=E
129 126 128 breqan12d AHBHA/xC<B/xCD<E
130 129 adantl φAHBHA/xC<B/xCD<E
131 124 130 bitrd φAHBHA<BD<E