Metamath Proof Explorer


Theorem mreacs

Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion mreacs XVACSXMoore𝒫X

Proof

Step Hyp Ref Expression
1 fveq2 x=XACSx=ACSX
2 pweq x=X𝒫x=𝒫X
3 2 fveq2d x=XMoore𝒫x=Moore𝒫X
4 1 3 eleq12d x=XACSxMoore𝒫xACSXMoore𝒫X
5 acsmre aACSxaMoorex
6 mresspw aMoorexa𝒫x
7 5 6 syl aACSxa𝒫x
8 5 7 elpwd aACSxa𝒫𝒫x
9 8 ssriv ACSx𝒫𝒫x
10 9 a1i ACSx𝒫𝒫x
11 vex xV
12 mremre xVMoorexMoore𝒫x
13 11 12 mp1i aACSxMoorexMoore𝒫x
14 5 ssriv ACSxMoorex
15 sstr aACSxACSxMoorexaMoorex
16 14 15 mpan2 aACSxaMoorex
17 mrerintcl MoorexMoore𝒫xaMoorex𝒫xaMoorex
18 13 16 17 syl2anc aACSx𝒫xaMoorex
19 ssel2 aACSxdadACSx
20 19 acsmred aACSxdadMoorex
21 eqid mrClsd=mrClsd
22 20 21 mrcssvd aACSxdamrClsdcx
23 22 ralrimiva aACSxdamrClsdcx
24 23 adantr aACSxc𝒫xdamrClsdcx
25 iunss damrClsdcxdamrClsdcx
26 24 25 sylibr aACSxc𝒫xdamrClsdcx
27 11 elpw2 damrClsdc𝒫xdamrClsdcx
28 26 27 sylibr aACSxc𝒫xdamrClsdc𝒫x
29 28 fmpttd aACSxc𝒫xdamrClsdc:𝒫x𝒫x
30 fssxp c𝒫xdamrClsdc:𝒫x𝒫xc𝒫xdamrClsdc𝒫x×𝒫x
31 29 30 syl aACSxc𝒫xdamrClsdc𝒫x×𝒫x
32 vpwex 𝒫xV
33 32 32 xpex 𝒫x×𝒫xV
34 ssexg c𝒫xdamrClsdc𝒫x×𝒫x𝒫x×𝒫xVc𝒫xdamrClsdcV
35 31 33 34 sylancl aACSxc𝒫xdamrClsdcV
36 19 adantlr aACSxb𝒫xdadACSx
37 elpwi b𝒫xbx
38 37 ad2antlr aACSxb𝒫xdabx
39 21 acsfiel2 dACSxbxbde𝒫bFinmrClsdeb
40 36 38 39 syl2anc aACSxb𝒫xdabde𝒫bFinmrClsdeb
41 40 ralbidva aACSxb𝒫xdabddae𝒫bFinmrClsdeb
42 iunss damrClsdebdamrClsdeb
43 42 ralbii e𝒫bFindamrClsdebe𝒫bFindamrClsdeb
44 ralcom e𝒫bFindamrClsdebdae𝒫bFinmrClsdeb
45 43 44 bitri e𝒫bFindamrClsdebdae𝒫bFinmrClsdeb
46 41 45 bitr4di aACSxb𝒫xdabde𝒫bFindamrClsdeb
47 elrint2 b𝒫xb𝒫xadabd
48 47 adantl aACSxb𝒫xb𝒫xadabd
49 funmpt Func𝒫xdamrClsdc
50 funiunfv Func𝒫xdamrClsdce𝒫bFinc𝒫xdamrClsdce=c𝒫xdamrClsdc𝒫bFin
51 49 50 ax-mp e𝒫bFinc𝒫xdamrClsdce=c𝒫xdamrClsdc𝒫bFin
52 51 sseq1i e𝒫bFinc𝒫xdamrClsdcebc𝒫xdamrClsdc𝒫bFinb
53 iunss e𝒫bFinc𝒫xdamrClsdcebe𝒫bFinc𝒫xdamrClsdceb
54 eqid c𝒫xdamrClsdc=c𝒫xdamrClsdc
55 fveq2 c=emrClsdc=mrClsde
56 55 iuneq2d c=edamrClsdc=damrClsde
57 inss1 𝒫bFin𝒫b
58 37 sspwd b𝒫x𝒫b𝒫x
59 58 adantl aACSxb𝒫x𝒫b𝒫x
60 57 59 sstrid aACSxb𝒫x𝒫bFin𝒫x
61 60 sselda aACSxb𝒫xe𝒫bFine𝒫x
62 20 21 mrcssvd aACSxdamrClsdex
63 62 ralrimiva aACSxdamrClsdex
64 63 ad2antrr aACSxb𝒫xe𝒫bFindamrClsdex
65 iunss damrClsdexdamrClsdex
66 64 65 sylibr aACSxb𝒫xe𝒫bFindamrClsdex
67 ssexg damrClsdexxVdamrClsdeV
68 66 11 67 sylancl aACSxb𝒫xe𝒫bFindamrClsdeV
69 54 56 61 68 fvmptd3 aACSxb𝒫xe𝒫bFinc𝒫xdamrClsdce=damrClsde
70 69 sseq1d aACSxb𝒫xe𝒫bFinc𝒫xdamrClsdcebdamrClsdeb
71 70 ralbidva aACSxb𝒫xe𝒫bFinc𝒫xdamrClsdcebe𝒫bFindamrClsdeb
72 53 71 bitrid aACSxb𝒫xe𝒫bFinc𝒫xdamrClsdcebe𝒫bFindamrClsdeb
73 52 72 bitr3id aACSxb𝒫xc𝒫xdamrClsdc𝒫bFinbe𝒫bFindamrClsdeb
74 46 48 73 3bitr4d aACSxb𝒫xb𝒫xac𝒫xdamrClsdc𝒫bFinb
75 74 ralrimiva aACSxb𝒫xb𝒫xac𝒫xdamrClsdc𝒫bFinb
76 29 75 jca aACSxc𝒫xdamrClsdc:𝒫x𝒫xb𝒫xb𝒫xac𝒫xdamrClsdc𝒫bFinb
77 feq1 f=c𝒫xdamrClsdcf:𝒫x𝒫xc𝒫xdamrClsdc:𝒫x𝒫x
78 imaeq1 f=c𝒫xdamrClsdcf𝒫bFin=c𝒫xdamrClsdc𝒫bFin
79 78 unieqd f=c𝒫xdamrClsdcf𝒫bFin=c𝒫xdamrClsdc𝒫bFin
80 79 sseq1d f=c𝒫xdamrClsdcf𝒫bFinbc𝒫xdamrClsdc𝒫bFinb
81 80 bibi2d f=c𝒫xdamrClsdcb𝒫xaf𝒫bFinbb𝒫xac𝒫xdamrClsdc𝒫bFinb
82 81 ralbidv f=c𝒫xdamrClsdcb𝒫xb𝒫xaf𝒫bFinbb𝒫xb𝒫xac𝒫xdamrClsdc𝒫bFinb
83 77 82 anbi12d f=c𝒫xdamrClsdcf:𝒫x𝒫xb𝒫xb𝒫xaf𝒫bFinbc𝒫xdamrClsdc:𝒫x𝒫xb𝒫xb𝒫xac𝒫xdamrClsdc𝒫bFinb
84 35 76 83 spcedv aACSxff:𝒫x𝒫xb𝒫xb𝒫xaf𝒫bFinb
85 isacs 𝒫xaACSx𝒫xaMoorexff:𝒫x𝒫xb𝒫xb𝒫xaf𝒫bFinb
86 18 84 85 sylanbrc aACSx𝒫xaACSx
87 86 adantl aACSx𝒫xaACSx
88 10 87 ismred2 ACSxMoore𝒫x
89 88 mptru ACSxMoore𝒫x
90 4 89 vtoclg XVACSXMoore𝒫X