Metamath Proof Explorer


Theorem mreexexlem4d

Description: Induction step of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlem2d.1 φAMooreX
mreexexlem2d.2 N=mrClsA
mreexexlem2d.3 I=mrIndA
mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
mreexexlem2d.5 φFXH
mreexexlem2d.6 φGXH
mreexexlem2d.7 φFNGH
mreexexlem2d.8 φFHI
mreexexlem4d.9 φLω
mreexexlem4d.A φhf𝒫Xhg𝒫XhfLgLfNghfhIj𝒫gfjjhI
mreexexlem4d.B φFsucLGsucL
Assertion mreexexlem4d φj𝒫GFjjHI

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φAMooreX
2 mreexexlem2d.2 N=mrClsA
3 mreexexlem2d.3 I=mrIndA
4 mreexexlem2d.4 φs𝒫XyXzNsyNsyNsz
5 mreexexlem2d.5 φFXH
6 mreexexlem2d.6 φGXH
7 mreexexlem2d.7 φFNGH
8 mreexexlem2d.8 φFHI
9 mreexexlem4d.9 φLω
10 mreexexlem4d.A φhf𝒫Xhg𝒫XhfLgLfNghfhIj𝒫gfjjhI
11 mreexexlem4d.B φFsucLGsucL
12 1 adantr φF=AMooreX
13 4 adantr φF=s𝒫XyXzNsyNsyNsz
14 5 adantr φF=FXH
15 6 adantr φF=GXH
16 7 adantr φF=FNGH
17 8 adantr φF=FHI
18 animorrl φF=F=G=
19 12 2 3 13 14 15 16 17 18 mreexexlem3d φF=j𝒫GFjjHI
20 n0 FrrF
21 20 biimpi FrrF
22 21 adantl φFrrF
23 1 adantr φrFAMooreX
24 4 adantr φrFs𝒫XyXzNsyNsyNsz
25 5 adantr φrFFXH
26 6 adantr φrFGXH
27 7 adantr φrFFNGH
28 8 adantr φrFFHI
29 simpr φrFrF
30 23 2 3 24 25 26 27 28 29 mreexexlem2d φrFqG¬qFrFrHqI
31 3anass qG¬qFrFrHqIqG¬qFrFrHqI
32 1 ad2antrr φrFqG¬qFrFrHqIAMooreX
33 32 elfvexd φrFqG¬qFrFrHqIXV
34 simpr2 φrFqG¬qFrFrHqI¬qFr
35 difsnb ¬qFrFrq=Fr
36 34 35 sylib φrFqG¬qFrFrHqIFrq=Fr
37 5 ad2antrr φrFqG¬qFrFrHqIFXH
38 37 ssdifssd φrFqG¬qFrFrHqIFrXH
39 38 ssdifd φrFqG¬qFrFrHqIFrqXHq
40 36 39 eqsstrrd φrFqG¬qFrFrHqIFrXHq
41 difun1 XHq=XHq
42 40 41 sseqtrrdi φrFqG¬qFrFrHqIFrXHq
43 6 ad2antrr φrFqG¬qFrFrHqIGXH
44 43 ssdifd φrFqG¬qFrFrHqIGqXHq
45 44 41 sseqtrrdi φrFqG¬qFrFrHqIGqXHq
46 7 ad2antrr φrFqG¬qFrFrHqIFNGH
47 simpr1 φrFqG¬qFrFrHqIqG
48 uncom Hq=qH
49 48 uneq2i GqHq=GqqH
50 unass GqqH=GqqH
51 difsnid qGGqq=G
52 51 uneq1d qGGqqH=GH
53 50 52 eqtr3id qGGqqH=GH
54 49 53 eqtrid qGGqHq=GH
55 47 54 syl φrFqG¬qFrFrHqIGqHq=GH
56 55 fveq2d φrFqG¬qFrFrHqINGqHq=NGH
57 46 56 sseqtrrd φrFqG¬qFrFrHqIFNGqHq
58 57 ssdifssd φrFqG¬qFrFrHqIFrNGqHq
59 simpr3 φrFqG¬qFrFrHqIFrHqI
60 11 ad2antrr φrFqG¬qFrFrHqIFsucLGsucL
61 9 ad2antrr φrFqG¬qFrFrHqILω
62 simplr φrFqG¬qFrFrHqIrF
63 3anan12 LωFsucLrFFsucLLωrF
64 dif1ennn LωFsucLrFFrL
65 63 64 sylbir FsucLLωrFFrL
66 65 expcom LωrFFsucLFrL
67 61 62 66 syl2anc φrFqG¬qFrFrHqIFsucLFrL
68 3anan12 LωGsucLqGGsucLLωqG
69 dif1ennn LωGsucLqGGqL
70 68 69 sylbir GsucLLωqGGqL
71 70 expcom LωqGGsucLGqL
72 61 47 71 syl2anc φrFqG¬qFrFrHqIGsucLGqL
73 67 72 orim12d φrFqG¬qFrFrHqIFsucLGsucLFrLGqL
74 60 73 mpd φrFqG¬qFrFrHqIFrLGqL
75 10 ad2antrr φrFqG¬qFrFrHqIhf𝒫Xhg𝒫XhfLgLfNghfhIj𝒫gfjjhI
76 33 42 45 58 59 74 75 mreexexlemd φrFqG¬qFrFrHqIi𝒫GqFriiHqI
77 33 adantr φrFqG¬qFrFrHqIi𝒫GqFriiHqIXV
78 6 ad3antrrr φrFqG¬qFrFrHqIi𝒫GqFriiHqIGXH
79 78 difss2d φrFqG¬qFrFrHqIi𝒫GqFriiHqIGX
80 77 79 ssexd φrFqG¬qFrFrHqIi𝒫GqFriiHqIGV
81 simprl φrFqG¬qFrFrHqIi𝒫GqFriiHqIi𝒫Gq
82 81 elpwid φrFqG¬qFrFrHqIi𝒫GqFriiHqIiGq
83 82 difss2d φrFqG¬qFrFrHqIi𝒫GqFriiHqIiG
84 simplr1 φrFqG¬qFrFrHqIi𝒫GqFriiHqIqG
85 84 snssd φrFqG¬qFrFrHqIi𝒫GqFriiHqIqG
86 83 85 unssd φrFqG¬qFrFrHqIi𝒫GqFriiHqIiqG
87 80 86 sselpwd φrFqG¬qFrFrHqIi𝒫GqFriiHqIiq𝒫G
88 difsnid rFFrr=F
89 88 ad3antlr φrFqG¬qFrFrHqIi𝒫GqFriiHqIFrr=F
90 simprrl φrFqG¬qFrFrHqIi𝒫GqFriiHqIFri
91 en2sn rVqVrq
92 91 el2v rq
93 92 a1i φrFqG¬qFrFrHqIi𝒫GqFriiHqIrq
94 disjdifr Frr=
95 94 a1i φrFqG¬qFrFrHqIi𝒫GqFriiHqIFrr=
96 ssdifin0 iGqiq=
97 82 96 syl φrFqG¬qFrFrHqIi𝒫GqFriiHqIiq=
98 unen FrirqFrr=iq=Frriq
99 90 93 95 97 98 syl22anc φrFqG¬qFrFrHqIi𝒫GqFriiHqIFrriq
100 89 99 eqbrtrrd φrFqG¬qFrFrHqIi𝒫GqFriiHqIFiq
101 unass iqH=iqH
102 uncom qH=Hq
103 102 uneq2i iqH=iHq
104 101 103 eqtr2i iHq=iqH
105 simprrr φrFqG¬qFrFrHqIi𝒫GqFriiHqIiHqI
106 104 105 eqeltrrid φrFqG¬qFrFrHqIi𝒫GqFriiHqIiqHI
107 breq2 j=iqFjFiq
108 uneq1 j=iqjH=iqH
109 108 eleq1d j=iqjHIiqHI
110 107 109 anbi12d j=iqFjjHIFiqiqHI
111 110 rspcev iq𝒫GFiqiqHIj𝒫GFjjHI
112 87 100 106 111 syl12anc φrFqG¬qFrFrHqIi𝒫GqFriiHqIj𝒫GFjjHI
113 76 112 rexlimddv φrFqG¬qFrFrHqIj𝒫GFjjHI
114 31 113 sylan2br φrFqG¬qFrFrHqIj𝒫GFjjHI
115 30 114 rexlimddv φrFj𝒫GFjjHI
116 115 adantlr φFrFj𝒫GFjjHI
117 22 116 exlimddv φFj𝒫GFjjHI
118 19 117 pm2.61dane φj𝒫GFjjHI