Metamath Proof Explorer


Theorem mreexexlem4d

Description: Induction step of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlem2d.1 φ A Moore X
mreexexlem2d.2 N = mrCls A
mreexexlem2d.3 I = mrInd A
mreexexlem2d.4 φ s 𝒫 X y X z N s y N s y N s z
mreexexlem2d.5 φ F X H
mreexexlem2d.6 φ G X H
mreexexlem2d.7 φ F N G H
mreexexlem2d.8 φ F H I
mreexexlem4d.9 φ L ω
mreexexlem4d.A φ h f 𝒫 X h g 𝒫 X h f L g L f N g h f h I j 𝒫 g f j j h I
mreexexlem4d.B φ F suc L G suc L
Assertion mreexexlem4d φ j 𝒫 G F j j H I

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 φ A Moore X
2 mreexexlem2d.2 N = mrCls A
3 mreexexlem2d.3 I = mrInd A
4 mreexexlem2d.4 φ s 𝒫 X y X z N s y N s y N s z
5 mreexexlem2d.5 φ F X H
6 mreexexlem2d.6 φ G X H
7 mreexexlem2d.7 φ F N G H
8 mreexexlem2d.8 φ F H I
9 mreexexlem4d.9 φ L ω
10 mreexexlem4d.A φ h f 𝒫 X h g 𝒫 X h f L g L f N g h f h I j 𝒫 g f j j h I
11 mreexexlem4d.B φ F suc L G suc L
12 1 adantr φ F = A Moore X
13 4 adantr φ F = s 𝒫 X y X z N s y N s y N s z
14 5 adantr φ F = F X H
15 6 adantr φ F = G X H
16 7 adantr φ F = F N G H
17 8 adantr φ F = F H I
18 animorrl φ F = F = G =
19 12 2 3 13 14 15 16 17 18 mreexexlem3d φ F = j 𝒫 G F j j H I
20 n0 F r r F
21 20 biimpi F r r F
22 21 adantl φ F r r F
23 1 adantr φ r F A Moore X
24 4 adantr φ r F s 𝒫 X y X z N s y N s y N s z
25 5 adantr φ r F F X H
26 6 adantr φ r F G X H
27 7 adantr φ r F F N G H
28 8 adantr φ r F F H I
29 simpr φ r F r F
30 23 2 3 24 25 26 27 28 29 mreexexlem2d φ r F q G ¬ q F r F r H q I
31 3anass q G ¬ q F r F r H q I q G ¬ q F r F r H q I
32 1 ad2antrr φ r F q G ¬ q F r F r H q I A Moore X
33 32 elfvexd φ r F q G ¬ q F r F r H q I X V
34 simpr2 φ r F q G ¬ q F r F r H q I ¬ q F r
35 difsnb ¬ q F r F r q = F r
36 34 35 sylib φ r F q G ¬ q F r F r H q I F r q = F r
37 5 ad2antrr φ r F q G ¬ q F r F r H q I F X H
38 37 ssdifssd φ r F q G ¬ q F r F r H q I F r X H
39 38 ssdifd φ r F q G ¬ q F r F r H q I F r q X H q
40 36 39 eqsstrrd φ r F q G ¬ q F r F r H q I F r X H q
41 difun1 X H q = X H q
42 40 41 sseqtrrdi φ r F q G ¬ q F r F r H q I F r X H q
43 6 ad2antrr φ r F q G ¬ q F r F r H q I G X H
44 43 ssdifd φ r F q G ¬ q F r F r H q I G q X H q
45 44 41 sseqtrrdi φ r F q G ¬ q F r F r H q I G q X H q
46 7 ad2antrr φ r F q G ¬ q F r F r H q I F N G H
47 simpr1 φ r F q G ¬ q F r F r H q I q G
48 uncom H q = q H
49 48 uneq2i G q H q = G q q H
50 unass G q q H = G q q H
51 difsnid q G G q q = G
52 51 uneq1d q G G q q H = G H
53 50 52 syl5eqr q G G q q H = G H
54 49 53 syl5eq q G G q H q = G H
55 47 54 syl φ r F q G ¬ q F r F r H q I G q H q = G H
56 55 fveq2d φ r F q G ¬ q F r F r H q I N G q H q = N G H
57 46 56 sseqtrrd φ r F q G ¬ q F r F r H q I F N G q H q
58 57 ssdifssd φ r F q G ¬ q F r F r H q I F r N G q H q
59 simpr3 φ r F q G ¬ q F r F r H q I F r H q I
60 11 ad2antrr φ r F q G ¬ q F r F r H q I F suc L G suc L
61 9 ad2antrr φ r F q G ¬ q F r F r H q I L ω
62 simplr φ r F q G ¬ q F r F r H q I r F
63 3anan12 L ω F suc L r F F suc L L ω r F
64 dif1en L ω F suc L r F F r L
65 63 64 sylbir F suc L L ω r F F r L
66 65 expcom L ω r F F suc L F r L
67 61 62 66 syl2anc φ r F q G ¬ q F r F r H q I F suc L F r L
68 3anan12 L ω G suc L q G G suc L L ω q G
69 dif1en L ω G suc L q G G q L
70 68 69 sylbir G suc L L ω q G G q L
71 70 expcom L ω q G G suc L G q L
72 61 47 71 syl2anc φ r F q G ¬ q F r F r H q I G suc L G q L
73 67 72 orim12d φ r F q G ¬ q F r F r H q I F suc L G suc L F r L G q L
74 60 73 mpd φ r F q G ¬ q F r F r H q I F r L G q L
75 10 ad2antrr φ r F q G ¬ q F r F r H q I h f 𝒫 X h g 𝒫 X h f L g L f N g h f h I j 𝒫 g f j j h I
76 33 42 45 58 59 74 75 mreexexlemd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I
77 33 adantr φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I X V
78 6 ad3antrrr φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I G X H
79 78 difss2d φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I G X
80 77 79 ssexd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I G V
81 simprl φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i 𝒫 G q
82 81 elpwid φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i G q
83 82 difss2d φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i G
84 simplr1 φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I q G
85 84 snssd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I q G
86 83 85 unssd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i q G
87 80 86 sselpwd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i q 𝒫 G
88 difsnid r F F r r = F
89 88 ad3antlr φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I F r r = F
90 simprrl φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I F r i
91 en2sn r V q V r q
92 91 el2v r q
93 92 a1i φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I r q
94 incom F r r = r F r
95 disjdif r F r =
96 94 95 eqtri F r r =
97 96 a1i φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I F r r =
98 ssdifin0 i G q i q =
99 82 98 syl φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i q =
100 unen F r i r q F r r = i q = F r r i q
101 90 93 97 99 100 syl22anc φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I F r r i q
102 89 101 eqbrtrrd φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I F i q
103 unass i q H = i q H
104 uncom q H = H q
105 104 uneq2i i q H = i H q
106 103 105 eqtr2i i H q = i q H
107 simprrr φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i H q I
108 106 107 eqeltrrid φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I i q H I
109 breq2 j = i q F j F i q
110 uneq1 j = i q j H = i q H
111 110 eleq1d j = i q j H I i q H I
112 109 111 anbi12d j = i q F j j H I F i q i q H I
113 112 rspcev i q 𝒫 G F i q i q H I j 𝒫 G F j j H I
114 87 102 108 113 syl12anc φ r F q G ¬ q F r F r H q I i 𝒫 G q F r i i H q I j 𝒫 G F j j H I
115 76 114 rexlimddv φ r F q G ¬ q F r F r H q I j 𝒫 G F j j H I
116 31 115 sylan2br φ r F q G ¬ q F r F r H q I j 𝒫 G F j j H I
117 30 116 rexlimddv φ r F j 𝒫 G F j j H I
118 117 adantlr φ F r F j 𝒫 G F j j H I
119 22 118 exlimddv φ F j 𝒫 G F j j H I
120 19 119 pm2.61dane φ j 𝒫 G F j j H I