Metamath Proof Explorer


Theorem n0sfincut

Description: The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025)

Ref Expression
Assertion n0sfincut A 0s A Fin A | s 0s

Proof

Step Hyp Ref Expression
1 oveq1 A = A | s = | s
2 df-0s 0 s = | s
3 0n0s 0 s 0s
4 2 3 eqeltrri | s 0s
5 1 4 eqeltrdi A = A | s 0s
6 5 a1d A = A 0s A Fin A | s 0s
7 n0ssno 0s No
8 sstr A 0s 0s No A No
9 7 8 mpan2 A 0s A No
10 sltso < s Or No
11 soss A No < s Or No < s Or A
12 9 10 11 mpisyl A 0s < s Or A
13 12 ad2antrl A A 0s A Fin < s Or A
14 simprr A A 0s A Fin A Fin
15 simpl A A 0s A Fin A
16 fimax2g < s Or A A Fin A x A y A ¬ x < s y
17 13 14 15 16 syl3anc A A 0s A Fin x A y A ¬ x < s y
18 9 ad2antrl A A 0s A Fin A No
19 18 adantr A A 0s A Fin x A A No
20 19 sselda A A 0s A Fin x A y A y No
21 18 sselda A A 0s A Fin x A x No
22 21 adantr A A 0s A Fin x A y A x No
23 slenlt y No x No y s x ¬ x < s y
24 20 22 23 syl2anc A A 0s A Fin x A y A y s x ¬ x < s y
25 24 ralbidva A A 0s A Fin x A y A y s x y A ¬ x < s y
26 simpl x A y A y s x x A
27 ssel2 A No x A x No
28 18 26 27 syl2an A A 0s A Fin x A y A y s x x No
29 snelpwi x No x 𝒫 No
30 nulssgt x 𝒫 No x s
31 28 29 30 3syl A A 0s A Fin x A y A y s x x s
32 breq2 w = x x s w x s x
33 simprl A A 0s A Fin x A y A y s x x A
34 slerflex x No x s x
35 28 34 syl A A 0s A Fin x A y A y s x x s x
36 32 33 35 rspcedvdw A A 0s A Fin x A y A y s x w A x s w
37 vex x V
38 breq1 z = x z s w x s w
39 38 rexbidv z = x w A z s w w A x s w
40 37 39 ralsn z x w A z s w w A x s w
41 36 40 sylibr A A 0s A Fin x A y A y s x z x w A z s w
42 ral0 z w w s z
43 42 a1i A A 0s A Fin x A y A y s x z w w s z
44 simplrr A A 0s A Fin x A y A y s x A Fin
45 snex x | s V
46 45 a1i A A 0s A Fin x A y A y s x x | s V
47 18 adantr A A 0s A Fin x A y A y s x A No
48 31 scutcld A A 0s A Fin x A y A y s x x | s No
49 48 snssd A A 0s A Fin x A y A y s x x | s No
50 47 sselda A A 0s A Fin x A y A y s x z A z No
51 28 adantr A A 0s A Fin x A y A y s x z A x No
52 48 adantr A A 0s A Fin x A y A y s x z A x | s No
53 breq1 y = z y s x z s x
54 simplrr A A 0s A Fin x A y A y s x z A y A y s x
55 simpr A A 0s A Fin x A y A y s x z A z A
56 53 54 55 rspcdva A A 0s A Fin x A y A y s x z A z s x
57 51 34 syl A A 0s A Fin x A y A y s x z A x s x
58 breq2 z = x x s z x s x
59 37 58 rexsn z x x s z x s x
60 57 59 sylibr A A 0s A Fin x A y A y s x z A z x x s z
61 60 orcd A A 0s A Fin x A y A y s x z A z x x s z w R x w s x | s
62 lltropt L x s R x
63 62 a1i A A 0s A Fin x A y A y s x z A L x s R x
64 31 adantr A A 0s A Fin x A y A y s x z A x s
65 lrcut x No L x | s R x = x
66 51 65 syl A A 0s A Fin x A y A y s x z A L x | s R x = x
67 66 eqcomd A A 0s A Fin x A y A y s x z A x = L x | s R x
68 eqidd A A 0s A Fin x A y A y s x z A x | s = x | s
69 sltrec L x s R x x s x = L x | s R x x | s = x | s x < s x | s z x x s z w R x w s x | s
70 63 64 67 68 69 syl22anc A A 0s A Fin x A y A y s x z A x < s x | s z x x s z w R x w s x | s
71 61 70 mpbird A A 0s A Fin x A y A y s x z A x < s x | s
72 50 51 52 56 71 slelttrd A A 0s A Fin x A y A y s x z A z < s x | s
73 velsn w x | s w = x | s
74 breq2 w = x | s z < s w z < s x | s
75 73 74 sylbi w x | s z < s w z < s x | s
76 72 75 syl5ibrcom A A 0s A Fin x A y A y s x z A w x | s z < s w
77 76 3impia A A 0s A Fin x A y A y s x z A w x | s z < s w
78 44 46 47 49 77 ssltd A A 0s A Fin x A y A y s x A s x | s
79 snelpwi x | s No x | s 𝒫 No
80 nulssgt x | s 𝒫 No x | s s
81 48 79 80 3syl A A 0s A Fin x A y A y s x x | s s
82 31 41 43 78 81 cofcut1d A A 0s A Fin x A y A y s x x | s = A | s
83 82 eqcomd A A 0s A Fin x A y A y s x A | s = x | s
84 simplrl A A 0s A Fin x A y A y s x A 0s
85 84 33 sseldd A A 0s A Fin x A y A y s x x 0s
86 peano2n0s x 0s x + s 1 s 0s
87 85 86 syl A A 0s A Fin x A y A y s x x + s 1 s 0s
88 n0scut x + s 1 s 0s x + s 1 s = x + s 1 s - s 1 s | s
89 87 88 syl A A 0s A Fin x A y A y s x x + s 1 s = x + s 1 s - s 1 s | s
90 1sno 1 s No
91 pncans x No 1 s No x + s 1 s - s 1 s = x
92 28 90 91 sylancl A A 0s A Fin x A y A y s x x + s 1 s - s 1 s = x
93 92 sneqd A A 0s A Fin x A y A y s x x + s 1 s - s 1 s = x
94 93 oveq1d A A 0s A Fin x A y A y s x x + s 1 s - s 1 s | s = x | s
95 89 94 eqtr2d A A 0s A Fin x A y A y s x x | s = x + s 1 s
96 95 87 eqeltrd A A 0s A Fin x A y A y s x x | s 0s
97 83 96 eqeltrd A A 0s A Fin x A y A y s x A | s 0s
98 97 expr A A 0s A Fin x A y A y s x A | s 0s
99 25 98 sylbird A A 0s A Fin x A y A ¬ x < s y A | s 0s
100 99 rexlimdva A A 0s A Fin x A y A ¬ x < s y A | s 0s
101 17 100 mpd A A 0s A Fin A | s 0s
102 101 ex A A 0s A Fin A | s 0s
103 6 102 pm2.61ine A 0s A Fin A | s 0s