Metamath Proof Explorer


Theorem n0sfincut

Description: The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025)

Ref Expression
Assertion n0sfincut ( ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = ∅ → ( 𝐴 |s ∅ ) = ( ∅ |s ∅ ) )
2 df-0s 0s = ( ∅ |s ∅ )
3 0n0s 0s ∈ ℕ0s
4 2 3 eqeltrri ( ∅ |s ∅ ) ∈ ℕ0s
5 1 4 eqeltrdi ( 𝐴 = ∅ → ( 𝐴 |s ∅ ) ∈ ℕ0s )
6 5 a1d ( 𝐴 = ∅ → ( ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) )
7 n0ssno 0s No
8 sstr ( ( 𝐴 ⊆ ℕ0s ∧ ℕ0s No ) → 𝐴 No )
9 7 8 mpan2 ( 𝐴 ⊆ ℕ0s𝐴 No )
10 sltso <s Or No
11 soss ( 𝐴 No → ( <s Or No → <s Or 𝐴 ) )
12 9 10 11 mpisyl ( 𝐴 ⊆ ℕ0s → <s Or 𝐴 )
13 12 ad2antrl ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → <s Or 𝐴 )
14 simprr ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin )
15 simpl ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ )
16 fimax2g ( ( <s Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
17 13 14 15 16 syl3anc ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
18 9 ad2antrl ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → 𝐴 No )
19 18 adantr ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) → 𝐴 No )
20 19 sselda ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑦 No )
21 18 sselda ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) → 𝑥 No )
22 21 adantr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑥 No )
23 slenlt ( ( 𝑦 No 𝑥 No ) → ( 𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦 ) )
24 20 22 23 syl2anc ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦 ) )
25 24 ralbidva ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
26 simpl ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) → 𝑥𝐴 )
27 ssel2 ( ( 𝐴 No 𝑥𝐴 ) → 𝑥 No )
28 18 26 27 syl2an ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 No )
29 snelpwi ( 𝑥 No → { 𝑥 } ∈ 𝒫 No )
30 nulssgt ( { 𝑥 } ∈ 𝒫 No → { 𝑥 } <<s ∅ )
31 28 29 30 3syl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → { 𝑥 } <<s ∅ )
32 breq2 ( 𝑤 = 𝑥 → ( 𝑥 ≤s 𝑤𝑥 ≤s 𝑥 ) )
33 simprl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥𝐴 )
34 slerflex ( 𝑥 No 𝑥 ≤s 𝑥 )
35 28 34 syl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ≤s 𝑥 )
36 32 33 35 rspcedvdw ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ∃ 𝑤𝐴 𝑥 ≤s 𝑤 )
37 vex 𝑥 ∈ V
38 breq1 ( 𝑧 = 𝑥 → ( 𝑧 ≤s 𝑤𝑥 ≤s 𝑤 ) )
39 38 rexbidv ( 𝑧 = 𝑥 → ( ∃ 𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃ 𝑤𝐴 𝑥 ≤s 𝑤 ) )
40 37 39 ralsn ( ∀ 𝑧 ∈ { 𝑥 } ∃ 𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃ 𝑤𝐴 𝑥 ≤s 𝑤 )
41 36 40 sylibr ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ∀ 𝑧 ∈ { 𝑥 } ∃ 𝑤𝐴 𝑧 ≤s 𝑤 )
42 ral0 𝑧 ∈ ∅ ∃ 𝑤 ∈ ∅ 𝑤 ≤s 𝑧
43 42 a1i ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ∀ 𝑧 ∈ ∅ ∃ 𝑤 ∈ ∅ 𝑤 ≤s 𝑧 )
44 simplrr ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 ∈ Fin )
45 snex { ( { 𝑥 } |s ∅ ) } ∈ V
46 45 a1i ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } ∈ V )
47 18 adantr ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 No )
48 31 scutcld ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) ∈ No )
49 48 snssd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } ⊆ No )
50 47 sselda ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑧 No )
51 28 adantr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑥 No )
52 48 adantr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( { 𝑥 } |s ∅ ) ∈ No )
53 breq1 ( 𝑦 = 𝑧 → ( 𝑦 ≤s 𝑥𝑧 ≤s 𝑥 ) )
54 simplrr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ∀ 𝑦𝐴 𝑦 ≤s 𝑥 )
55 simpr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑧𝐴 )
56 53 54 55 rspcdva ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑧 ≤s 𝑥 )
57 51 34 syl ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑥 ≤s 𝑥 )
58 breq2 ( 𝑧 = 𝑥 → ( 𝑥 ≤s 𝑧𝑥 ≤s 𝑥 ) )
59 37 58 rexsn ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧𝑥 ≤s 𝑥 )
60 57 59 sylibr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 )
61 60 orcd ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) )
62 lltropt ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 )
63 62 a1i ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) )
64 31 adantr ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → { 𝑥 } <<s ∅ )
65 lrcut ( 𝑥 No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
66 51 65 syl ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
67 66 eqcomd ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
68 eqidd ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( { 𝑥 } |s ∅ ) = ( { 𝑥 } |s ∅ ) )
69 sltrec ( ( ( ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) ∧ { 𝑥 } <<s ∅ ) ∧ ( 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) ∧ ( { 𝑥 } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) ) → ( 𝑥 <s ( { 𝑥 } |s ∅ ) ↔ ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) ) )
70 63 64 67 68 69 syl22anc ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( 𝑥 <s ( { 𝑥 } |s ∅ ) ↔ ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) ) )
71 61 70 mpbird ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑥 <s ( { 𝑥 } |s ∅ ) )
72 50 51 52 56 71 slelttrd ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → 𝑧 <s ( { 𝑥 } |s ∅ ) )
73 velsn ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } ↔ 𝑤 = ( { 𝑥 } |s ∅ ) )
74 breq2 ( 𝑤 = ( { 𝑥 } |s ∅ ) → ( 𝑧 <s 𝑤𝑧 <s ( { 𝑥 } |s ∅ ) ) )
75 73 74 sylbi ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } → ( 𝑧 <s 𝑤𝑧 <s ( { 𝑥 } |s ∅ ) ) )
76 72 75 syl5ibrcom ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴 ) → ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } → 𝑧 <s 𝑤 ) )
77 76 3impia ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧𝐴𝑤 ∈ { ( { 𝑥 } |s ∅ ) } ) → 𝑧 <s 𝑤 )
78 44 46 47 49 77 ssltd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 <<s { ( { 𝑥 } |s ∅ ) } )
79 snelpwi ( ( { 𝑥 } |s ∅ ) ∈ No → { ( { 𝑥 } |s ∅ ) } ∈ 𝒫 No )
80 nulssgt ( { ( { 𝑥 } |s ∅ ) } ∈ 𝒫 No → { ( { 𝑥 } |s ∅ ) } <<s ∅ )
81 48 79 80 3syl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } <<s ∅ )
82 31 41 43 78 81 cofcut1d ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) = ( 𝐴 |s ∅ ) )
83 82 eqcomd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝐴 |s ∅ ) = ( { 𝑥 } |s ∅ ) )
84 simplrl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 ⊆ ℕ0s )
85 84 33 sseldd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ∈ ℕ0s )
86 peano2n0s ( 𝑥 ∈ ℕ0s → ( 𝑥 +s 1s ) ∈ ℕ0s )
87 85 86 syl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝑥 +s 1s ) ∈ ℕ0s )
88 n0scut ( ( 𝑥 +s 1s ) ∈ ℕ0s → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) )
89 87 88 syl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) )
90 1sno 1s No
91 pncans ( ( 𝑥 No ∧ 1s No ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 )
92 28 90 91 sylancl ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 )
93 92 sneqd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → { ( ( 𝑥 +s 1s ) -s 1s ) } = { 𝑥 } )
94 93 oveq1d ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) = ( { 𝑥 } |s ∅ ) )
95 89 94 eqtr2d ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) = ( 𝑥 +s 1s ) )
96 95 87 eqeltrd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) ∈ ℕ0s )
97 83 96 eqeltrd ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝐴 |s ∅ ) ∈ ℕ0s )
98 97 expr ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 𝑦 ≤s 𝑥 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) )
99 25 98 sylbird ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) )
100 99 rexlimdva ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) )
101 17 100 mpd ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) ) → ( 𝐴 |s ∅ ) ∈ ℕ0s )
102 101 ex ( 𝐴 ≠ ∅ → ( ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) )
103 6 102 pm2.61ine ( ( 𝐴 ⊆ ℕ0s𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s )