| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 |s ∅ ) = ( ∅ |s ∅ ) ) |
| 2 |
|
df-0s |
⊢ 0s = ( ∅ |s ∅ ) |
| 3 |
|
0n0s |
⊢ 0s ∈ ℕ0s |
| 4 |
2 3
|
eqeltrri |
⊢ ( ∅ |s ∅ ) ∈ ℕ0s |
| 5 |
1 4
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 |s ∅ ) ∈ ℕ0s ) |
| 6 |
5
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) ) |
| 7 |
|
n0ssno |
⊢ ℕ0s ⊆ No |
| 8 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℕ0s ∧ ℕ0s ⊆ No ) → 𝐴 ⊆ No ) |
| 9 |
7 8
|
mpan2 |
⊢ ( 𝐴 ⊆ ℕ0s → 𝐴 ⊆ No ) |
| 10 |
|
sltso |
⊢ <s Or No |
| 11 |
|
soss |
⊢ ( 𝐴 ⊆ No → ( <s Or No → <s Or 𝐴 ) ) |
| 12 |
9 10 11
|
mpisyl |
⊢ ( 𝐴 ⊆ ℕ0s → <s Or 𝐴 ) |
| 13 |
12
|
ad2antrl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → <s Or 𝐴 ) |
| 14 |
|
simprr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin ) |
| 15 |
|
simpl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ ) |
| 16 |
|
fimax2g |
⊢ ( ( <s Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
| 17 |
13 14 15 16
|
syl3anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
| 18 |
9
|
ad2antrl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → 𝐴 ⊆ No ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
| 20 |
19
|
sselda |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ No ) |
| 21 |
18
|
sselda |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ No ) |
| 23 |
|
slenlt |
⊢ ( ( 𝑦 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦 ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦 ) ) |
| 25 |
24
|
ralbidva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
| 26 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) → 𝑥 ∈ 𝐴 ) |
| 27 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
| 28 |
18 26 27
|
syl2an |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ∈ No ) |
| 29 |
|
snelpwi |
⊢ ( 𝑥 ∈ No → { 𝑥 } ∈ 𝒫 No ) |
| 30 |
|
nulssgt |
⊢ ( { 𝑥 } ∈ 𝒫 No → { 𝑥 } <<s ∅ ) |
| 31 |
28 29 30
|
3syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → { 𝑥 } <<s ∅ ) |
| 32 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑥 ≤s 𝑤 ↔ 𝑥 ≤s 𝑥 ) ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 34 |
|
slerflex |
⊢ ( 𝑥 ∈ No → 𝑥 ≤s 𝑥 ) |
| 35 |
28 34
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ≤s 𝑥 ) |
| 36 |
32 33 35
|
rspcedvdw |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ∃ 𝑤 ∈ 𝐴 𝑥 ≤s 𝑤 ) |
| 37 |
|
vex |
⊢ 𝑥 ∈ V |
| 38 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤s 𝑤 ↔ 𝑥 ≤s 𝑤 ) ) |
| 39 |
38
|
rexbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑤 ∈ 𝐴 𝑧 ≤s 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑥 ≤s 𝑤 ) ) |
| 40 |
37 39
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 𝑥 } ∃ 𝑤 ∈ 𝐴 𝑧 ≤s 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑥 ≤s 𝑤 ) |
| 41 |
36 40
|
sylibr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ∀ 𝑧 ∈ { 𝑥 } ∃ 𝑤 ∈ 𝐴 𝑧 ≤s 𝑤 ) |
| 42 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ∃ 𝑤 ∈ ∅ 𝑤 ≤s 𝑧 |
| 43 |
42
|
a1i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ∀ 𝑧 ∈ ∅ ∃ 𝑤 ∈ ∅ 𝑤 ≤s 𝑧 ) |
| 44 |
|
simplrr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 ∈ Fin ) |
| 45 |
|
snex |
⊢ { ( { 𝑥 } |s ∅ ) } ∈ V |
| 46 |
45
|
a1i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } ∈ V ) |
| 47 |
18
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 ⊆ No ) |
| 48 |
31
|
scutcld |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) ∈ No ) |
| 49 |
48
|
snssd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } ⊆ No ) |
| 50 |
47
|
sselda |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ No ) |
| 51 |
28
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ No ) |
| 52 |
48
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑥 } |s ∅ ) ∈ No ) |
| 53 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤s 𝑥 ↔ 𝑧 ≤s 𝑥 ) ) |
| 54 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) |
| 55 |
|
simpr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 56 |
53 54 55
|
rspcdva |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤s 𝑥 ) |
| 57 |
51 34
|
syl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ≤s 𝑥 ) |
| 58 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 ≤s 𝑧 ↔ 𝑥 ≤s 𝑥 ) ) |
| 59 |
37 58
|
rexsn |
⊢ ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ↔ 𝑥 ≤s 𝑥 ) |
| 60 |
57 59
|
sylibr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ) |
| 61 |
60
|
orcd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) ) |
| 62 |
|
lltropt |
⊢ ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) |
| 63 |
62
|
a1i |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) ) |
| 64 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → { 𝑥 } <<s ∅ ) |
| 65 |
|
lrcut |
⊢ ( 𝑥 ∈ No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 ) |
| 66 |
51 65
|
syl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 ) |
| 67 |
66
|
eqcomd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) ) |
| 68 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑥 } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) |
| 69 |
|
sltrec |
⊢ ( ( ( ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) ∧ { 𝑥 } <<s ∅ ) ∧ ( 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) ∧ ( { 𝑥 } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) ) → ( 𝑥 <s ( { 𝑥 } |s ∅ ) ↔ ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) ) ) |
| 70 |
63 64 67 68 69
|
syl22anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <s ( { 𝑥 } |s ∅ ) ↔ ( ∃ 𝑧 ∈ { 𝑥 } 𝑥 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑥 ) 𝑤 ≤s ( { 𝑥 } |s ∅ ) ) ) ) |
| 71 |
61 70
|
mpbird |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 <s ( { 𝑥 } |s ∅ ) ) |
| 72 |
50 51 52 56 71
|
slelttrd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 <s ( { 𝑥 } |s ∅ ) ) |
| 73 |
|
velsn |
⊢ ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } ↔ 𝑤 = ( { 𝑥 } |s ∅ ) ) |
| 74 |
|
breq2 |
⊢ ( 𝑤 = ( { 𝑥 } |s ∅ ) → ( 𝑧 <s 𝑤 ↔ 𝑧 <s ( { 𝑥 } |s ∅ ) ) ) |
| 75 |
73 74
|
sylbi |
⊢ ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } → ( 𝑧 <s 𝑤 ↔ 𝑧 <s ( { 𝑥 } |s ∅ ) ) ) |
| 76 |
72 75
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } → 𝑧 <s 𝑤 ) ) |
| 77 |
76
|
3impia |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) ∧ 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ { ( { 𝑥 } |s ∅ ) } ) → 𝑧 <s 𝑤 ) |
| 78 |
44 46 47 49 77
|
ssltd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 <<s { ( { 𝑥 } |s ∅ ) } ) |
| 79 |
|
snelpwi |
⊢ ( ( { 𝑥 } |s ∅ ) ∈ No → { ( { 𝑥 } |s ∅ ) } ∈ 𝒫 No ) |
| 80 |
|
nulssgt |
⊢ ( { ( { 𝑥 } |s ∅ ) } ∈ 𝒫 No → { ( { 𝑥 } |s ∅ ) } <<s ∅ ) |
| 81 |
48 79 80
|
3syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → { ( { 𝑥 } |s ∅ ) } <<s ∅ ) |
| 82 |
31 41 43 78 81
|
cofcut1d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) = ( 𝐴 |s ∅ ) ) |
| 83 |
82
|
eqcomd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝐴 |s ∅ ) = ( { 𝑥 } |s ∅ ) ) |
| 84 |
|
simplrl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝐴 ⊆ ℕ0s ) |
| 85 |
84 33
|
sseldd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → 𝑥 ∈ ℕ0s ) |
| 86 |
|
peano2n0s |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 +s 1s ) ∈ ℕ0s ) |
| 87 |
85 86
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝑥 +s 1s ) ∈ ℕ0s ) |
| 88 |
|
n0scut |
⊢ ( ( 𝑥 +s 1s ) ∈ ℕ0s → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
| 89 |
87 88
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
| 90 |
|
1sno |
⊢ 1s ∈ No |
| 91 |
|
pncans |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
| 92 |
28 90 91
|
sylancl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
| 93 |
92
|
sneqd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → { ( ( 𝑥 +s 1s ) -s 1s ) } = { 𝑥 } ) |
| 94 |
93
|
oveq1d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) |
| 95 |
89 94
|
eqtr2d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) = ( 𝑥 +s 1s ) ) |
| 96 |
95 87
|
eqeltrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( { 𝑥 } |s ∅ ) ∈ ℕ0s ) |
| 97 |
83 96
|
eqeltrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ) ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) |
| 98 |
97
|
expr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) ) |
| 99 |
25 98
|
sylbird |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) ) |
| 100 |
99
|
rexlimdva |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( 𝐴 |s ∅ ) ∈ ℕ0s ) ) |
| 101 |
17 100
|
mpd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) |
| 102 |
101
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) ) |
| 103 |
6 102
|
pm2.61ine |
⊢ ( ( 𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin ) → ( 𝐴 |s ∅ ) ∈ ℕ0s ) |