Metamath Proof Explorer


Theorem nmhmcn

Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015)

Ref Expression
Hypotheses nmhmcn.j J = TopOpen S
nmhmcn.k K = TopOpen T
nmhmcn.g G = Scalar S
nmhmcn.b B = Base G
Assertion nmhmcn S NrmMod CMod T NrmMod CMod B F S NMHom T F S LMHom T F J Cn K

Proof

Step Hyp Ref Expression
1 nmhmcn.j J = TopOpen S
2 nmhmcn.k K = TopOpen T
3 nmhmcn.g G = Scalar S
4 nmhmcn.b B = Base G
5 elinel1 S NrmMod CMod S NrmMod
6 elinel1 T NrmMod CMod T NrmMod
7 isnmhm F S NMHom T S NrmMod T NrmMod F S LMHom T F S NGHom T
8 7 baib S NrmMod T NrmMod F S NMHom T F S LMHom T F S NGHom T
9 5 6 8 syl2an S NrmMod CMod T NrmMod CMod F S NMHom T F S LMHom T F S NGHom T
10 9 3adant3 S NrmMod CMod T NrmMod CMod B F S NMHom T F S LMHom T F S NGHom T
11 1 2 nghmcn F S NGHom T F J Cn K
12 simpll1 S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K S NrmMod CMod
13 12 elin1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K S NrmMod
14 nlmngp S NrmMod S NrmGrp
15 ngpms S NrmGrp S MetSp
16 13 14 15 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K S MetSp
17 msxms S MetSp S ∞MetSp
18 eqid Base S = Base S
19 eqid dist S Base S × Base S = dist S Base S × Base S
20 18 19 xmsxmet S ∞MetSp dist S Base S × Base S ∞Met Base S
21 16 17 20 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K dist S Base S × Base S ∞Met Base S
22 simpr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F J Cn K
23 simpll2 S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K T NrmMod CMod
24 23 elin1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K T NrmMod
25 nlmngp T NrmMod T NrmGrp
26 ngpms T NrmGrp T MetSp
27 24 25 26 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K T MetSp
28 msxms T MetSp T ∞MetSp
29 eqid Base T = Base T
30 eqid dist T Base T × Base T = dist T Base T × Base T
31 29 30 xmsxmet T ∞MetSp dist T Base T × Base T ∞Met Base T
32 27 28 31 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K dist T Base T × Base T ∞Met Base T
33 nlmlmod T NrmMod T LMod
34 eqid 0 T = 0 T
35 29 34 lmod0vcl T LMod 0 T Base T
36 24 33 35 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 T Base T
37 1rp 1 +
38 rpxr 1 + 1 *
39 37 38 mp1i S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 1 *
40 eqid MetOpen dist T Base T × Base T = MetOpen dist T Base T × Base T
41 40 blopn dist T Base T × Base T ∞Met Base T 0 T Base T 1 * 0 T ball dist T Base T × Base T 1 MetOpen dist T Base T × Base T
42 32 36 39 41 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 T ball dist T Base T × Base T 1 MetOpen dist T Base T × Base T
43 2 29 30 mstopn T MetSp K = MetOpen dist T Base T × Base T
44 24 25 26 43 4syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K K = MetOpen dist T Base T × Base T
45 42 44 eleqtrrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 T ball dist T Base T × Base T 1 K
46 cnima F J Cn K 0 T ball dist T Base T × Base T 1 K F -1 0 T ball dist T Base T × Base T 1 J
47 22 45 46 syl2anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F -1 0 T ball dist T Base T × Base T 1 J
48 1 18 19 mstopn S MetSp J = MetOpen dist S Base S × Base S
49 13 14 15 48 4syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K J = MetOpen dist S Base S × Base S
50 47 49 eleqtrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F -1 0 T ball dist T Base T × Base T 1 MetOpen dist S Base S × Base S
51 nlmlmod S NrmMod S LMod
52 eqid 0 S = 0 S
53 18 52 lmod0vcl S LMod 0 S Base S
54 13 51 53 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 S Base S
55 lmghm F S LMHom T F S GrpHom T
56 55 ad2antlr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F S GrpHom T
57 52 34 ghmid F S GrpHom T F 0 S = 0 T
58 56 57 syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F 0 S = 0 T
59 37 a1i S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 1 +
60 blcntr dist T Base T × Base T ∞Met Base T 0 T Base T 1 + 0 T 0 T ball dist T Base T × Base T 1
61 32 36 59 60 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 T 0 T ball dist T Base T × Base T 1
62 58 61 eqeltrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F 0 S 0 T ball dist T Base T × Base T 1
63 18 29 lmhmf F S LMHom T F : Base S Base T
64 63 ad2antlr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F : Base S Base T
65 ffn F : Base S Base T F Fn Base S
66 elpreima F Fn Base S 0 S F -1 0 T ball dist T Base T × Base T 1 0 S Base S F 0 S 0 T ball dist T Base T × Base T 1
67 64 65 66 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 S F -1 0 T ball dist T Base T × Base T 1 0 S Base S F 0 S 0 T ball dist T Base T × Base T 1
68 54 62 67 mpbir2and S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K 0 S F -1 0 T ball dist T Base T × Base T 1
69 eqid MetOpen dist S Base S × Base S = MetOpen dist S Base S × Base S
70 69 mopni2 dist S Base S × Base S ∞Met Base S F -1 0 T ball dist T Base T × Base T 1 MetOpen dist S Base S × Base S 0 S F -1 0 T ball dist T Base T × Base T 1 x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1
71 21 50 68 70 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1
72 simpl1 S NrmMod CMod T NrmMod CMod B F S LMHom T S NrmMod CMod
73 72 elin1d S NrmMod CMod T NrmMod CMod B F S LMHom T S NrmMod
74 73 14 syl S NrmMod CMod T NrmMod CMod B F S LMHom T S NrmGrp
75 74 adantr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K S NrmGrp
76 75 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S S NrmGrp
77 ngpgrp S NrmGrp S Grp
78 76 77 syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S S Grp
79 simpr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S y Base S
80 eqid norm S = norm S
81 eqid dist S = dist S
82 80 18 52 81 19 nmval2 S Grp y Base S norm S y = y dist S Base S × Base S 0 S
83 78 79 82 syl2anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm S y = y dist S Base S × Base S 0 S
84 21 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S dist S Base S × Base S ∞Met Base S
85 54 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 0 S Base S
86 xmetsym dist S Base S × Base S ∞Met Base S y Base S 0 S Base S y dist S Base S × Base S 0 S = 0 S dist S Base S × Base S y
87 84 79 85 86 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S y dist S Base S × Base S 0 S = 0 S dist S Base S × Base S y
88 83 87 eqtrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm S y = 0 S dist S Base S × Base S y
89 88 breq1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm S y < x 0 S dist S Base S × Base S y < x
90 89 biimpd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm S y < x 0 S dist S Base S × Base S y < x
91 64 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F : Base S Base T
92 elpreima F Fn Base S y F -1 0 T ball dist T Base T × Base T 1 y Base S F y 0 T ball dist T Base T × Base T 1
93 91 65 92 3syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S y F -1 0 T ball dist T Base T × Base T 1 y Base S F y 0 T ball dist T Base T × Base T 1
94 32 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S dist T Base T × Base T ∞Met Base T
95 36 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 0 T Base T
96 37 38 mp1i S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 1 *
97 elbl dist T Base T × Base T ∞Met Base T 0 T Base T 1 * F y 0 T ball dist T Base T × Base T 1 F y Base T 0 T dist T Base T × Base T F y < 1
98 94 95 96 97 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F y 0 T ball dist T Base T × Base T 1 F y Base T 0 T dist T Base T × Base T F y < 1
99 simpl2 S NrmMod CMod T NrmMod CMod B F S LMHom T T NrmMod CMod
100 99 elin1d S NrmMod CMod T NrmMod CMod B F S LMHom T T NrmMod
101 100 25 syl S NrmMod CMod T NrmMod CMod B F S LMHom T T NrmGrp
102 101 adantr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K T NrmGrp
103 102 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S T NrmGrp
104 simplr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F S LMHom T
105 104 adantr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + F S LMHom T
106 105 63 syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + F : Base S Base T
107 106 ffvelrnda S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F y Base T
108 eqid norm T = norm T
109 29 108 nmcl T NrmGrp F y Base T norm T F y
110 103 107 109 syl2anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y
111 1re 1
112 ltle norm T F y 1 norm T F y < 1 norm T F y 1
113 110 111 112 sylancl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y < 1 norm T F y 1
114 ngpgrp T NrmGrp T Grp
115 103 114 syl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S T Grp
116 eqid dist T = dist T
117 108 29 34 116 30 nmval2 T Grp F y Base T norm T F y = F y dist T Base T × Base T 0 T
118 115 107 117 syl2anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y = F y dist T Base T × Base T 0 T
119 xmetsym dist T Base T × Base T ∞Met Base T F y Base T 0 T Base T F y dist T Base T × Base T 0 T = 0 T dist T Base T × Base T F y
120 94 107 95 119 syl3anc S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F y dist T Base T × Base T 0 T = 0 T dist T Base T × Base T F y
121 118 120 eqtrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y = 0 T dist T Base T × Base T F y
122 121 breq1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y < 1 0 T dist T Base T × Base T F y < 1
123 1red S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 1
124 simplr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S x +
125 110 123 124 lediv1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S norm T F y 1 norm T F y x 1 x
126 113 122 125 3imtr3d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 0 T dist T Base T × Base T F y < 1 norm T F y x 1 x
127 126 adantld S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F y Base T 0 T dist T Base T × Base T F y < 1 norm T F y x 1 x
128 98 127 sylbid S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S F y 0 T ball dist T Base T × Base T 1 norm T F y x 1 x
129 128 adantld S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S y Base S F y 0 T ball dist T Base T × Base T 1 norm T F y x 1 x
130 93 129 sylbid S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S y F -1 0 T ball dist T Base T × Base T 1 norm T F y x 1 x
131 90 130 imim12d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 0 S dist S Base S × Base S y < x y F -1 0 T ball dist T Base T × Base T 1 norm S y < x norm T F y x 1 x
132 131 ralimdva S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + y Base S 0 S dist S Base S × Base S y < x y F -1 0 T ball dist T Base T × Base T 1 y Base S norm S y < x norm T F y x 1 x
133 rpxr x + x *
134 blval dist S Base S × Base S ∞Met Base S 0 S Base S x * 0 S ball dist S Base S × Base S x = y Base S | 0 S dist S Base S × Base S y < x
135 21 54 133 134 syl2an3an S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x = y Base S | 0 S dist S Base S × Base S y < x
136 135 sseq1d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1 y Base S | 0 S dist S Base S × Base S y < x F -1 0 T ball dist T Base T × Base T 1
137 rabss y Base S | 0 S dist S Base S × Base S y < x F -1 0 T ball dist T Base T × Base T 1 y Base S 0 S dist S Base S × Base S y < x y F -1 0 T ball dist T Base T × Base T 1
138 136 137 bitrdi S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1 y Base S 0 S dist S Base S × Base S y < x y F -1 0 T ball dist T Base T × Base T 1
139 eqid S normOp T = S normOp T
140 12 adantr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + S NrmMod CMod
141 23 adantr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + T NrmMod CMod
142 rpreccl x + 1 x +
143 142 adantl S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 1 x +
144 143 rpxrd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 1 x *
145 simpr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + x +
146 simpl3 S NrmMod CMod T NrmMod CMod B F S LMHom T B
147 146 ad2antrr S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + B
148 139 18 80 108 3 4 140 141 105 144 145 147 nmoleub2b S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + S normOp T F 1 x y Base S norm S y < x norm T F y x 1 x
149 132 138 148 3imtr4d S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1 S normOp T F 1 x
150 75 102 56 3jca S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K S NrmGrp T NrmGrp F S GrpHom T
151 142 rpred x + 1 x
152 139 bddnghm S NrmGrp T NrmGrp F S GrpHom T 1 x S normOp T F 1 x F S NGHom T
153 152 expr S NrmGrp T NrmGrp F S GrpHom T 1 x S normOp T F 1 x F S NGHom T
154 150 151 153 syl2an S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + S normOp T F 1 x F S NGHom T
155 149 154 syld S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1 F S NGHom T
156 155 rexlimdva S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K x + 0 S ball dist S Base S × Base S x F -1 0 T ball dist T Base T × Base T 1 F S NGHom T
157 71 156 mpd S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F S NGHom T
158 157 ex S NrmMod CMod T NrmMod CMod B F S LMHom T F J Cn K F S NGHom T
159 11 158 impbid2 S NrmMod CMod T NrmMod CMod B F S LMHom T F S NGHom T F J Cn K
160 159 pm5.32da S NrmMod CMod T NrmMod CMod B F S LMHom T F S NGHom T F S LMHom T F J Cn K
161 10 160 bitrd S NrmMod CMod T NrmMod CMod B F S NMHom T F S LMHom T F J Cn K