Metamath Proof Explorer


Theorem nmoleub3

Description: The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015) (Proof shortened by AV, 29-Sep-2021)

Ref Expression
Hypotheses nmoleub2.n N=SnormOpT
nmoleub2.v V=BaseS
nmoleub2.l L=normS
nmoleub2.m M=normT
nmoleub2.g G=ScalarS
nmoleub2.w K=BaseG
nmoleub2.s φSNrmModCMod
nmoleub2.t φTNrmModCMod
nmoleub2.f φFSLMHomT
nmoleub2.a φA*
nmoleub2.r φR+
nmoleub3.5 φ0A
nmoleub3.6 φK
Assertion nmoleub3 φNFAxVLx=RMFxRA

Proof

Step Hyp Ref Expression
1 nmoleub2.n N=SnormOpT
2 nmoleub2.v V=BaseS
3 nmoleub2.l L=normS
4 nmoleub2.m M=normT
5 nmoleub2.g G=ScalarS
6 nmoleub2.w K=BaseG
7 nmoleub2.s φSNrmModCMod
8 nmoleub2.t φTNrmModCMod
9 nmoleub2.f φFSLMHomT
10 nmoleub2.a φA*
11 nmoleub2.r φR+
12 nmoleub3.5 φ0A
13 nmoleub3.6 φK
14 12 adantr φxVLx=RMFxRA0A
15 9 ad3antrrr φxVLx=RMFxRAAyVy0SFSLMHomT
16 13 ad3antrrr φxVLx=RMFxRAAyVy0SK
17 11 ad3antrrr φxVLx=RMFxRAAyVy0SR+
18 7 elin1d φSNrmMod
19 18 ad3antrrr φxVLx=RMFxRAAyVy0SSNrmMod
20 nlmngp SNrmModSNrmGrp
21 19 20 syl φxVLx=RMFxRAAyVy0SSNrmGrp
22 simprl φxVLx=RMFxRAAyVy0SyV
23 simprr φxVLx=RMFxRAAyVy0Sy0S
24 eqid 0S=0S
25 2 3 24 nmrpcl SNrmGrpyVy0SLy+
26 21 22 23 25 syl3anc φxVLx=RMFxRAAyVy0SLy+
27 17 26 rpdivcld φxVLx=RMFxRAAyVy0SRLy+
28 27 rpred φxVLx=RMFxRAAyVy0SRLy
29 16 28 sseldd φxVLx=RMFxRAAyVy0SRLyK
30 eqid S=S
31 eqid T=T
32 5 6 2 30 31 lmhmlin FSLMHomTRLyKyVFRLySy=RLyTFy
33 15 29 22 32 syl3anc φxVLx=RMFxRAAyVy0SFRLySy=RLyTFy
34 33 fveq2d φxVLx=RMFxRAAyVy0SMFRLySy=MRLyTFy
35 8 elin1d φTNrmMod
36 35 ad3antrrr φxVLx=RMFxRAAyVy0STNrmMod
37 eqid ScalarT=ScalarT
38 5 37 lmhmsca FSLMHomTScalarT=G
39 15 38 syl φxVLx=RMFxRAAyVy0SScalarT=G
40 39 fveq2d φxVLx=RMFxRAAyVy0SBaseScalarT=BaseG
41 40 6 eqtr4di φxVLx=RMFxRAAyVy0SBaseScalarT=K
42 29 41 eleqtrrd φxVLx=RMFxRAAyVy0SRLyBaseScalarT
43 eqid BaseT=BaseT
44 2 43 lmhmf FSLMHomTF:VBaseT
45 15 44 syl φxVLx=RMFxRAAyVy0SF:VBaseT
46 45 22 ffvelcdmd φxVLx=RMFxRAAyVy0SFyBaseT
47 eqid BaseScalarT=BaseScalarT
48 eqid normScalarT=normScalarT
49 43 4 31 37 47 48 nmvs TNrmModRLyBaseScalarTFyBaseTMRLyTFy=normScalarTRLyMFy
50 36 42 46 49 syl3anc φxVLx=RMFxRAAyVy0SMRLyTFy=normScalarTRLyMFy
51 39 fveq2d φxVLx=RMFxRAAyVy0SnormScalarT=normG
52 51 fveq1d φxVLx=RMFxRAAyVy0SnormScalarTRLy=normGRLy
53 7 elin2d φSCMod
54 53 ad3antrrr φxVLx=RMFxRAAyVy0SSCMod
55 5 6 clmabs SCModRLyKRLy=normGRLy
56 54 29 55 syl2anc φxVLx=RMFxRAAyVy0SRLy=normGRLy
57 27 rpge0d φxVLx=RMFxRAAyVy0S0RLy
58 28 57 absidd φxVLx=RMFxRAAyVy0SRLy=RLy
59 56 58 eqtr3d φxVLx=RMFxRAAyVy0SnormGRLy=RLy
60 52 59 eqtrd φxVLx=RMFxRAAyVy0SnormScalarTRLy=RLy
61 60 oveq1d φxVLx=RMFxRAAyVy0SnormScalarTRLyMFy=RLyMFy
62 34 50 61 3eqtrd φxVLx=RMFxRAAyVy0SMFRLySy=RLyMFy
63 62 oveq1d φxVLx=RMFxRAAyVy0SMFRLySyR=RLyMFyR
64 27 rpcnd φxVLx=RMFxRAAyVy0SRLy
65 nlmngp TNrmModTNrmGrp
66 36 65 syl φxVLx=RMFxRAAyVy0STNrmGrp
67 43 4 nmcl TNrmGrpFyBaseTMFy
68 66 46 67 syl2anc φxVLx=RMFxRAAyVy0SMFy
69 68 recnd φxVLx=RMFxRAAyVy0SMFy
70 17 rpcnd φxVLx=RMFxRAAyVy0SR
71 17 rpne0d φxVLx=RMFxRAAyVy0SR0
72 64 69 70 71 divassd φxVLx=RMFxRAAyVy0SRLyMFyR=RLyMFyR
73 26 rpcnd φxVLx=RMFxRAAyVy0SLy
74 26 rpne0d φxVLx=RMFxRAAyVy0SLy0
75 69 70 73 71 74 dmdcand φxVLx=RMFxRAAyVy0SRLyMFyR=MFyLy
76 63 72 75 3eqtrd φxVLx=RMFxRAAyVy0SMFRLySyR=MFyLy
77 eqid normG=normG
78 2 3 30 5 6 77 nmvs SNrmModRLyKyVLRLySy=normGRLyLy
79 19 29 22 78 syl3anc φxVLx=RMFxRAAyVy0SLRLySy=normGRLyLy
80 59 oveq1d φxVLx=RMFxRAAyVy0SnormGRLyLy=RLyLy
81 70 73 74 divcan1d φxVLx=RMFxRAAyVy0SRLyLy=R
82 79 80 81 3eqtrd φxVLx=RMFxRAAyVy0SLRLySy=R
83 fveqeq2 x=RLySyLx=RLRLySy=R
84 2fveq3 x=RLySyMFx=MFRLySy
85 84 oveq1d x=RLySyMFxR=MFRLySyR
86 85 breq1d x=RLySyMFxRAMFRLySyRA
87 83 86 imbi12d x=RLySyLx=RMFxRALRLySy=RMFRLySyRA
88 simpllr φxVLx=RMFxRAAyVy0SxVLx=RMFxRA
89 2 5 30 6 clmvscl SCModRLyKyVRLySyV
90 54 29 22 89 syl3anc φxVLx=RMFxRAAyVy0SRLySyV
91 87 88 90 rspcdva φxVLx=RMFxRAAyVy0SLRLySy=RMFRLySyRA
92 82 91 mpd φxVLx=RMFxRAAyVy0SMFRLySyRA
93 76 92 eqbrtrrd φxVLx=RMFxRAAyVy0SMFyLyA
94 simplr φxVLx=RMFxRAAyVy0SA
95 68 94 26 ledivmul2d φxVLx=RMFxRAAyVy0SMFyLyAMFyALy
96 93 95 mpbid φxVLx=RMFxRAAyVy0SMFyALy
97 11 adantr φxVR+
98 97 rpred φxVR
99 98 leidd φxVRR
100 breq1 Lx=RLxRRR
101 99 100 syl5ibrcom φxVLx=RLxR
102 1 2 3 4 5 6 7 8 9 10 11 14 96 101 nmoleub2lem φNFAxVLx=RMFxRA