| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsgmgclem.b |  | 
						
							| 2 |  | nsgmgclem.q |  | 
						
							| 3 |  | nsgmgclem.p |  | 
						
							| 4 |  | nsgmgclem.n |  | 
						
							| 5 |  | nsgmgclem.f |  | 
						
							| 6 |  | eqidd |  | 
						
							| 7 |  | eqidd |  | 
						
							| 8 |  | eqidd |  | 
						
							| 9 |  | ssrab2 |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 10 1 | sseqtrdi |  | 
						
							| 12 |  | sneq |  | 
						
							| 13 | 12 | oveq1d |  | 
						
							| 14 | 13 | eleq1d |  | 
						
							| 15 |  | nsgsubg |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 |  | subgrcl |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 19 | grpidcl |  | 
						
							| 21 | 18 20 | syl |  | 
						
							| 22 | 19 3 | lsm02 |  | 
						
							| 23 | 16 22 | syl |  | 
						
							| 24 | 2 | nsgqus0 |  | 
						
							| 25 | 4 5 24 | syl2anc |  | 
						
							| 26 | 23 25 | eqeltrd |  | 
						
							| 27 | 14 21 26 | elrabd |  | 
						
							| 28 |  | sneq |  | 
						
							| 29 | 28 | oveq1d |  | 
						
							| 30 | 29 | eleq1d |  | 
						
							| 31 | 18 | ad2antrr |  | 
						
							| 32 |  | elrabi |  | 
						
							| 33 | 32 | ad2antlr |  | 
						
							| 34 |  | elrabi |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 1 36 | grpcl |  | 
						
							| 38 | 31 33 35 37 | syl3anc |  | 
						
							| 39 | 16 | ad2antrr |  | 
						
							| 40 | 1 3 39 38 | quslsm |  | 
						
							| 41 | 4 | ad2antrr |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 2 1 36 42 | qusadd |  | 
						
							| 44 | 41 33 35 43 | syl3anc |  | 
						
							| 45 | 5 | ad2antrr |  | 
						
							| 46 | 1 3 39 33 | quslsm |  | 
						
							| 47 |  | sneq |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 48 | eleq1d |  | 
						
							| 50 | 49 | elrab |  | 
						
							| 51 | 50 | simprbi |  | 
						
							| 52 | 51 | ad2antlr |  | 
						
							| 53 | 46 52 | eqeltrd |  | 
						
							| 54 | 1 3 39 35 | quslsm |  | 
						
							| 55 |  | sneq |  | 
						
							| 56 | 55 | oveq1d |  | 
						
							| 57 | 56 | eleq1d |  | 
						
							| 58 | 57 | elrab |  | 
						
							| 59 | 58 | simprbi |  | 
						
							| 60 | 59 | adantl |  | 
						
							| 61 | 54 60 | eqeltrd |  | 
						
							| 62 | 42 | subgcl |  | 
						
							| 63 | 45 53 61 62 | syl3anc |  | 
						
							| 64 | 44 63 | eqeltrrd |  | 
						
							| 65 | 40 64 | eqeltrrd |  | 
						
							| 66 | 30 38 65 | elrabd |  | 
						
							| 67 | 66 | 3impa |  | 
						
							| 68 |  | sneq |  | 
						
							| 69 | 68 | oveq1d |  | 
						
							| 70 | 69 | eleq1d |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 | 1 71 | grpinvcl |  | 
						
							| 73 | 18 72 | sylan |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 | 2 1 71 75 | qusinv |  | 
						
							| 77 | 4 76 | sylan |  | 
						
							| 78 | 16 | adantr |  | 
						
							| 79 |  | simpr |  | 
						
							| 80 | 1 3 78 79 | quslsm |  | 
						
							| 81 | 80 | fveq2d |  | 
						
							| 82 | 1 3 78 73 | quslsm |  | 
						
							| 83 | 77 81 82 | 3eqtr3d |  | 
						
							| 84 | 83 | adantr |  | 
						
							| 85 | 5 | ad2antrr |  | 
						
							| 86 |  | simpr |  | 
						
							| 87 | 75 | subginvcl |  | 
						
							| 88 | 85 86 87 | syl2anc |  | 
						
							| 89 | 84 88 | eqeltrrd |  | 
						
							| 90 | 70 74 89 | elrabd |  | 
						
							| 91 | 90 | anasss |  | 
						
							| 92 | 50 91 | sylan2b |  | 
						
							| 93 | 6 7 8 11 27 67 92 18 | issubgrpd2 |  |