Metamath Proof Explorer


Theorem nsgmgclem

Description: Lemma for nsgmgc . (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses nsgmgclem.b B=BaseG
nsgmgclem.q Q=G/𝑠G~QGN
nsgmgclem.p ˙=LSSumG
nsgmgclem.n φNNrmSGrpG
nsgmgclem.f φFSubGrpQ
Assertion nsgmgclem φaB|a˙NFSubGrpG

Proof

Step Hyp Ref Expression
1 nsgmgclem.b B=BaseG
2 nsgmgclem.q Q=G/𝑠G~QGN
3 nsgmgclem.p ˙=LSSumG
4 nsgmgclem.n φNNrmSGrpG
5 nsgmgclem.f φFSubGrpQ
6 eqidd φG𝑠aB|a˙NF=G𝑠aB|a˙NF
7 eqidd φ0G=0G
8 eqidd φ+G=+G
9 ssrab2 aB|a˙NFB
10 9 a1i φaB|a˙NFB
11 10 1 sseqtrdi φaB|a˙NFBaseG
12 sneq a=0Ga=0G
13 12 oveq1d a=0Ga˙N=0G˙N
14 13 eleq1d a=0Ga˙NF0G˙NF
15 nsgsubg NNrmSGrpGNSubGrpG
16 4 15 syl φNSubGrpG
17 subgrcl NSubGrpGGGrp
18 16 17 syl φGGrp
19 eqid 0G=0G
20 1 19 grpidcl GGrp0GB
21 18 20 syl φ0GB
22 19 3 lsm02 NSubGrpG0G˙N=N
23 16 22 syl φ0G˙N=N
24 2 nsgqus0 NNrmSGrpGFSubGrpQNF
25 4 5 24 syl2anc φNF
26 23 25 eqeltrd φ0G˙NF
27 14 21 26 elrabd φ0GaB|a˙NF
28 sneq a=x+Gya=x+Gy
29 28 oveq1d a=x+Gya˙N=x+Gy˙N
30 29 eleq1d a=x+Gya˙NFx+Gy˙NF
31 18 ad2antrr φxaB|a˙NFyaB|a˙NFGGrp
32 elrabi xaB|a˙NFxB
33 32 ad2antlr φxaB|a˙NFyaB|a˙NFxB
34 elrabi yaB|a˙NFyB
35 34 adantl φxaB|a˙NFyaB|a˙NFyB
36 eqid +G=+G
37 1 36 grpcl GGrpxByBx+GyB
38 31 33 35 37 syl3anc φxaB|a˙NFyaB|a˙NFx+GyB
39 16 ad2antrr φxaB|a˙NFyaB|a˙NFNSubGrpG
40 1 3 39 38 quslsm φxaB|a˙NFyaB|a˙NFx+GyG~QGN=x+Gy˙N
41 4 ad2antrr φxaB|a˙NFyaB|a˙NFNNrmSGrpG
42 eqid +Q=+Q
43 2 1 36 42 qusadd NNrmSGrpGxByBxG~QGN+QyG~QGN=x+GyG~QGN
44 41 33 35 43 syl3anc φxaB|a˙NFyaB|a˙NFxG~QGN+QyG~QGN=x+GyG~QGN
45 5 ad2antrr φxaB|a˙NFyaB|a˙NFFSubGrpQ
46 1 3 39 33 quslsm φxaB|a˙NFyaB|a˙NFxG~QGN=x˙N
47 sneq a=xa=x
48 47 oveq1d a=xa˙N=x˙N
49 48 eleq1d a=xa˙NFx˙NF
50 49 elrab xaB|a˙NFxBx˙NF
51 50 simprbi xaB|a˙NFx˙NF
52 51 ad2antlr φxaB|a˙NFyaB|a˙NFx˙NF
53 46 52 eqeltrd φxaB|a˙NFyaB|a˙NFxG~QGNF
54 1 3 39 35 quslsm φxaB|a˙NFyaB|a˙NFyG~QGN=y˙N
55 sneq a=ya=y
56 55 oveq1d a=ya˙N=y˙N
57 56 eleq1d a=ya˙NFy˙NF
58 57 elrab yaB|a˙NFyBy˙NF
59 58 simprbi yaB|a˙NFy˙NF
60 59 adantl φxaB|a˙NFyaB|a˙NFy˙NF
61 54 60 eqeltrd φxaB|a˙NFyaB|a˙NFyG~QGNF
62 42 subgcl FSubGrpQxG~QGNFyG~QGNFxG~QGN+QyG~QGNF
63 45 53 61 62 syl3anc φxaB|a˙NFyaB|a˙NFxG~QGN+QyG~QGNF
64 44 63 eqeltrrd φxaB|a˙NFyaB|a˙NFx+GyG~QGNF
65 40 64 eqeltrrd φxaB|a˙NFyaB|a˙NFx+Gy˙NF
66 30 38 65 elrabd φxaB|a˙NFyaB|a˙NFx+GyaB|a˙NF
67 66 3impa φxaB|a˙NFyaB|a˙NFx+GyaB|a˙NF
68 sneq a=invgGxa=invgGx
69 68 oveq1d a=invgGxa˙N=invgGx˙N
70 69 eleq1d a=invgGxa˙NFinvgGx˙NF
71 eqid invgG=invgG
72 1 71 grpinvcl GGrpxBinvgGxB
73 18 72 sylan φxBinvgGxB
74 73 adantr φxBx˙NFinvgGxB
75 eqid invgQ=invgQ
76 2 1 71 75 qusinv NNrmSGrpGxBinvgQxG~QGN=invgGxG~QGN
77 4 76 sylan φxBinvgQxG~QGN=invgGxG~QGN
78 16 adantr φxBNSubGrpG
79 simpr φxBxB
80 1 3 78 79 quslsm φxBxG~QGN=x˙N
81 80 fveq2d φxBinvgQxG~QGN=invgQx˙N
82 1 3 78 73 quslsm φxBinvgGxG~QGN=invgGx˙N
83 77 81 82 3eqtr3d φxBinvgQx˙N=invgGx˙N
84 83 adantr φxBx˙NFinvgQx˙N=invgGx˙N
85 5 ad2antrr φxBx˙NFFSubGrpQ
86 simpr φxBx˙NFx˙NF
87 75 subginvcl FSubGrpQx˙NFinvgQx˙NF
88 85 86 87 syl2anc φxBx˙NFinvgQx˙NF
89 84 88 eqeltrrd φxBx˙NFinvgGx˙NF
90 70 74 89 elrabd φxBx˙NFinvgGxaB|a˙NF
91 90 anasss φxBx˙NFinvgGxaB|a˙NF
92 50 91 sylan2b φxaB|a˙NFinvgGxaB|a˙NF
93 6 7 8 11 27 67 92 18 issubgrpd2 φaB|a˙NFSubGrpG