Step |
Hyp |
Ref |
Expression |
1 |
|
nsgmgclem.b |
|
2 |
|
nsgmgclem.q |
|
3 |
|
nsgmgclem.p |
|
4 |
|
nsgmgclem.n |
|
5 |
|
nsgmgclem.f |
|
6 |
|
eqidd |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
|
ssrab2 |
|
10 |
9
|
a1i |
|
11 |
10 1
|
sseqtrdi |
|
12 |
|
sneq |
|
13 |
12
|
oveq1d |
|
14 |
13
|
eleq1d |
|
15 |
|
nsgsubg |
|
16 |
4 15
|
syl |
|
17 |
|
subgrcl |
|
18 |
16 17
|
syl |
|
19 |
|
eqid |
|
20 |
1 19
|
grpidcl |
|
21 |
18 20
|
syl |
|
22 |
19 3
|
lsm02 |
|
23 |
16 22
|
syl |
|
24 |
2
|
nsgqus0 |
|
25 |
4 5 24
|
syl2anc |
|
26 |
23 25
|
eqeltrd |
|
27 |
14 21 26
|
elrabd |
|
28 |
|
sneq |
|
29 |
28
|
oveq1d |
|
30 |
29
|
eleq1d |
|
31 |
18
|
ad2antrr |
|
32 |
|
elrabi |
|
33 |
32
|
ad2antlr |
|
34 |
|
elrabi |
|
35 |
34
|
adantl |
|
36 |
|
eqid |
|
37 |
1 36
|
grpcl |
|
38 |
31 33 35 37
|
syl3anc |
|
39 |
16
|
ad2antrr |
|
40 |
1 3 39 38
|
quslsm |
|
41 |
4
|
ad2antrr |
|
42 |
|
eqid |
|
43 |
2 1 36 42
|
qusadd |
|
44 |
41 33 35 43
|
syl3anc |
|
45 |
5
|
ad2antrr |
|
46 |
1 3 39 33
|
quslsm |
|
47 |
|
sneq |
|
48 |
47
|
oveq1d |
|
49 |
48
|
eleq1d |
|
50 |
49
|
elrab |
|
51 |
50
|
simprbi |
|
52 |
51
|
ad2antlr |
|
53 |
46 52
|
eqeltrd |
|
54 |
1 3 39 35
|
quslsm |
|
55 |
|
sneq |
|
56 |
55
|
oveq1d |
|
57 |
56
|
eleq1d |
|
58 |
57
|
elrab |
|
59 |
58
|
simprbi |
|
60 |
59
|
adantl |
|
61 |
54 60
|
eqeltrd |
|
62 |
42
|
subgcl |
|
63 |
45 53 61 62
|
syl3anc |
|
64 |
44 63
|
eqeltrrd |
|
65 |
40 64
|
eqeltrrd |
|
66 |
30 38 65
|
elrabd |
|
67 |
66
|
3impa |
|
68 |
|
sneq |
|
69 |
68
|
oveq1d |
|
70 |
69
|
eleq1d |
|
71 |
|
eqid |
|
72 |
1 71
|
grpinvcl |
|
73 |
18 72
|
sylan |
|
74 |
73
|
adantr |
|
75 |
|
eqid |
|
76 |
2 1 71 75
|
qusinv |
|
77 |
4 76
|
sylan |
|
78 |
16
|
adantr |
|
79 |
|
simpr |
|
80 |
1 3 78 79
|
quslsm |
|
81 |
80
|
fveq2d |
|
82 |
1 3 78 73
|
quslsm |
|
83 |
77 81 82
|
3eqtr3d |
|
84 |
83
|
adantr |
|
85 |
5
|
ad2antrr |
|
86 |
|
simpr |
|
87 |
75
|
subginvcl |
|
88 |
85 86 87
|
syl2anc |
|
89 |
84 88
|
eqeltrrd |
|
90 |
70 74 89
|
elrabd |
|
91 |
90
|
anasss |
|
92 |
50 91
|
sylan2b |
|
93 |
6 7 8 11 27 67 92 18
|
issubgrpd2 |
|