Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
The quotient map
nsgmgclem
Next ⟩
nsgmgc
Metamath Proof Explorer
Ascii
Unicode
Theorem
nsgmgclem
Description:
Lemma for
nsgmgc
.
(Contributed by
Thierry Arnoux
, 27-Jul-2024)
Ref
Expression
Hypotheses
nsgmgclem.b
⊢
B
=
Base
G
nsgmgclem.q
⊢
Q
=
G
/
𝑠
G
~
QG
N
nsgmgclem.p
⊢
⊕
˙
=
LSSum
G
nsgmgclem.n
⊢
φ
→
N
∈
NrmSGrp
G
nsgmgclem.f
⊢
φ
→
F
∈
SubGrp
Q
Assertion
nsgmgclem
⊢
φ
→
a
∈
B
|
a
⊕
˙
N
∈
F
∈
SubGrp
G
Proof
Step
Hyp
Ref
Expression
1
nsgmgclem.b
⊢
B
=
Base
G
2
nsgmgclem.q
⊢
Q
=
G
/
𝑠
G
~
QG
N
3
nsgmgclem.p
⊢
⊕
˙
=
LSSum
G
4
nsgmgclem.n
⊢
φ
→
N
∈
NrmSGrp
G
5
nsgmgclem.f
⊢
φ
→
F
∈
SubGrp
Q
6
eqidd
⊢
φ
→
G
↾
𝑠
a
∈
B
|
a
⊕
˙
N
∈
F
=
G
↾
𝑠
a
∈
B
|
a
⊕
˙
N
∈
F
7
eqidd
⊢
φ
→
0
G
=
0
G
8
eqidd
⊢
φ
→
+
G
=
+
G
9
ssrab2
⊢
a
∈
B
|
a
⊕
˙
N
∈
F
⊆
B
10
9
a1i
⊢
φ
→
a
∈
B
|
a
⊕
˙
N
∈
F
⊆
B
11
10
1
sseqtrdi
⊢
φ
→
a
∈
B
|
a
⊕
˙
N
∈
F
⊆
Base
G
12
sneq
⊢
a
=
0
G
→
a
=
0
G
13
12
oveq1d
⊢
a
=
0
G
→
a
⊕
˙
N
=
0
G
⊕
˙
N
14
13
eleq1d
⊢
a
=
0
G
→
a
⊕
˙
N
∈
F
↔
0
G
⊕
˙
N
∈
F
15
nsgsubg
⊢
N
∈
NrmSGrp
G
→
N
∈
SubGrp
G
16
4
15
syl
⊢
φ
→
N
∈
SubGrp
G
17
subgrcl
⊢
N
∈
SubGrp
G
→
G
∈
Grp
18
16
17
syl
⊢
φ
→
G
∈
Grp
19
eqid
⊢
0
G
=
0
G
20
1
19
grpidcl
⊢
G
∈
Grp
→
0
G
∈
B
21
18
20
syl
⊢
φ
→
0
G
∈
B
22
19
3
lsm02
⊢
N
∈
SubGrp
G
→
0
G
⊕
˙
N
=
N
23
16
22
syl
⊢
φ
→
0
G
⊕
˙
N
=
N
24
2
nsgqus0
⊢
N
∈
NrmSGrp
G
∧
F
∈
SubGrp
Q
→
N
∈
F
25
4
5
24
syl2anc
⊢
φ
→
N
∈
F
26
23
25
eqeltrd
⊢
φ
→
0
G
⊕
˙
N
∈
F
27
14
21
26
elrabd
⊢
φ
→
0
G
∈
a
∈
B
|
a
⊕
˙
N
∈
F
28
sneq
⊢
a
=
x
+
G
y
→
a
=
x
+
G
y
29
28
oveq1d
⊢
a
=
x
+
G
y
→
a
⊕
˙
N
=
x
+
G
y
⊕
˙
N
30
29
eleq1d
⊢
a
=
x
+
G
y
→
a
⊕
˙
N
∈
F
↔
x
+
G
y
⊕
˙
N
∈
F
31
18
ad2antrr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
G
∈
Grp
32
elrabi
⊢
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
∈
B
33
32
ad2antlr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
∈
B
34
elrabi
⊢
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
∈
B
35
34
adantl
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
∈
B
36
eqid
⊢
+
G
=
+
G
37
1
36
grpcl
⊢
G
∈
Grp
∧
x
∈
B
∧
y
∈
B
→
x
+
G
y
∈
B
38
31
33
35
37
syl3anc
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
∈
B
39
16
ad2antrr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
N
∈
SubGrp
G
40
1
3
39
38
quslsm
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
G
~
QG
N
=
x
+
G
y
⊕
˙
N
41
4
ad2antrr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
N
∈
NrmSGrp
G
42
eqid
⊢
+
Q
=
+
Q
43
2
1
36
42
qusadd
⊢
N
∈
NrmSGrp
G
∧
x
∈
B
∧
y
∈
B
→
x
G
~
QG
N
+
Q
y
G
~
QG
N
=
x
+
G
y
G
~
QG
N
44
41
33
35
43
syl3anc
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
G
~
QG
N
+
Q
y
G
~
QG
N
=
x
+
G
y
G
~
QG
N
45
5
ad2antrr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
F
∈
SubGrp
Q
46
1
3
39
33
quslsm
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
G
~
QG
N
=
x
⊕
˙
N
47
sneq
⊢
a
=
x
→
a
=
x
48
47
oveq1d
⊢
a
=
x
→
a
⊕
˙
N
=
x
⊕
˙
N
49
48
eleq1d
⊢
a
=
x
→
a
⊕
˙
N
∈
F
↔
x
⊕
˙
N
∈
F
50
49
elrab
⊢
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
↔
x
∈
B
∧
x
⊕
˙
N
∈
F
51
50
simprbi
⊢
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
⊕
˙
N
∈
F
52
51
ad2antlr
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
⊕
˙
N
∈
F
53
46
52
eqeltrd
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
G
~
QG
N
∈
F
54
1
3
39
35
quslsm
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
G
~
QG
N
=
y
⊕
˙
N
55
sneq
⊢
a
=
y
→
a
=
y
56
55
oveq1d
⊢
a
=
y
→
a
⊕
˙
N
=
y
⊕
˙
N
57
56
eleq1d
⊢
a
=
y
→
a
⊕
˙
N
∈
F
↔
y
⊕
˙
N
∈
F
58
57
elrab
⊢
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
↔
y
∈
B
∧
y
⊕
˙
N
∈
F
59
58
simprbi
⊢
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
⊕
˙
N
∈
F
60
59
adantl
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
⊕
˙
N
∈
F
61
54
60
eqeltrd
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
y
G
~
QG
N
∈
F
62
42
subgcl
⊢
F
∈
SubGrp
Q
∧
x
G
~
QG
N
∈
F
∧
y
G
~
QG
N
∈
F
→
x
G
~
QG
N
+
Q
y
G
~
QG
N
∈
F
63
45
53
61
62
syl3anc
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
G
~
QG
N
+
Q
y
G
~
QG
N
∈
F
64
44
63
eqeltrrd
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
G
~
QG
N
∈
F
65
40
64
eqeltrrd
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
⊕
˙
N
∈
F
66
30
38
65
elrabd
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
67
66
3impa
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
∧
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
x
+
G
y
∈
a
∈
B
|
a
⊕
˙
N
∈
F
68
sneq
⊢
a
=
inv
g
G
x
→
a
=
inv
g
G
x
69
68
oveq1d
⊢
a
=
inv
g
G
x
→
a
⊕
˙
N
=
inv
g
G
x
⊕
˙
N
70
69
eleq1d
⊢
a
=
inv
g
G
x
→
a
⊕
˙
N
∈
F
↔
inv
g
G
x
⊕
˙
N
∈
F
71
eqid
⊢
inv
g
G
=
inv
g
G
72
1
71
grpinvcl
⊢
G
∈
Grp
∧
x
∈
B
→
inv
g
G
x
∈
B
73
18
72
sylan
⊢
φ
∧
x
∈
B
→
inv
g
G
x
∈
B
74
73
adantr
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
G
x
∈
B
75
eqid
⊢
inv
g
Q
=
inv
g
Q
76
2
1
71
75
qusinv
⊢
N
∈
NrmSGrp
G
∧
x
∈
B
→
inv
g
Q
x
G
~
QG
N
=
inv
g
G
x
G
~
QG
N
77
4
76
sylan
⊢
φ
∧
x
∈
B
→
inv
g
Q
x
G
~
QG
N
=
inv
g
G
x
G
~
QG
N
78
16
adantr
⊢
φ
∧
x
∈
B
→
N
∈
SubGrp
G
79
simpr
⊢
φ
∧
x
∈
B
→
x
∈
B
80
1
3
78
79
quslsm
⊢
φ
∧
x
∈
B
→
x
G
~
QG
N
=
x
⊕
˙
N
81
80
fveq2d
⊢
φ
∧
x
∈
B
→
inv
g
Q
x
G
~
QG
N
=
inv
g
Q
x
⊕
˙
N
82
1
3
78
73
quslsm
⊢
φ
∧
x
∈
B
→
inv
g
G
x
G
~
QG
N
=
inv
g
G
x
⊕
˙
N
83
77
81
82
3eqtr3d
⊢
φ
∧
x
∈
B
→
inv
g
Q
x
⊕
˙
N
=
inv
g
G
x
⊕
˙
N
84
83
adantr
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
Q
x
⊕
˙
N
=
inv
g
G
x
⊕
˙
N
85
5
ad2antrr
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
F
∈
SubGrp
Q
86
simpr
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
x
⊕
˙
N
∈
F
87
75
subginvcl
⊢
F
∈
SubGrp
Q
∧
x
⊕
˙
N
∈
F
→
inv
g
Q
x
⊕
˙
N
∈
F
88
85
86
87
syl2anc
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
Q
x
⊕
˙
N
∈
F
89
84
88
eqeltrrd
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
G
x
⊕
˙
N
∈
F
90
70
74
89
elrabd
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
G
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
91
90
anasss
⊢
φ
∧
x
∈
B
∧
x
⊕
˙
N
∈
F
→
inv
g
G
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
92
50
91
sylan2b
⊢
φ
∧
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
→
inv
g
G
x
∈
a
∈
B
|
a
⊕
˙
N
∈
F
93
6
7
8
11
27
67
92
18
issubgrpd2
⊢
φ
→
a
∈
B
|
a
⊕
˙
N
∈
F
∈
SubGrp
G