Metamath Proof Explorer


Theorem occllem

Description: Lemma for occl . (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses occl.1 φA
occl.2 φFCauchy
occl.3 φF:A
occl.4 φBA
Assertion occllem φvFihB=0

Proof

Step Hyp Ref Expression
1 occl.1 φA
2 occl.2 φFCauchy
3 occl.3 φF:A
4 occl.4 φBA
5 eqid TopOpenfld=TopOpenfld
6 5 cnfldhaus TopOpenfldHaus
7 6 a1i φTopOpenfldHaus
8 ax-hcompl FCauchyxFvx
9 hlimf v:domv
10 ffn v:domvvFndomv
11 9 10 ax-mp vFndomv
12 fnbr vFndomvFvxFdomv
13 11 12 mpan FvxFdomv
14 13 rexlimivw xFvxFdomv
15 2 8 14 3syl φFdomv
16 ffun v:domvFunv
17 funfvbrb FunvFdomvFvvF
18 9 16 17 mp2b FdomvFvvF
19 15 18 sylib φFvvF
20 eqid +norm=+norm
21 eqid norm-=norm-
22 20 21 hhims norm-=IndMet+norm
23 eqid MetOpennorm-=MetOpennorm-
24 20 22 23 hhlm v=tMetOpennorm-
25 resss tMetOpennorm-tMetOpennorm-
26 24 25 eqsstri vtMetOpennorm-
27 26 ssbri FvvFFtMetOpennorm-vF
28 19 27 syl φFtMetOpennorm-vF
29 21 hilxmet norm-∞Met
30 23 mopntopon norm-∞MetMetOpennorm-TopOn
31 29 30 mp1i φMetOpennorm-TopOn
32 31 cnmptid φxxMetOpennorm-CnMetOpennorm-
33 1 4 sseldd φB
34 31 31 33 cnmptc φxBMetOpennorm-CnMetOpennorm-
35 20 hhnv +normNrmCVec
36 20 hhip ih=𝑖OLD+norm
37 36 22 23 5 dipcn +normNrmCVecihMetOpennorm-×tMetOpennorm-CnTopOpenfld
38 35 37 mp1i φihMetOpennorm-×tMetOpennorm-CnTopOpenfld
39 31 32 34 38 cnmpt12f φxxihBMetOpennorm-CnTopOpenfld
40 28 39 lmcn φxxihBFtTopOpenfldxxihBvF
41 3 ffvelcdmda φkFkA
42 ocel AFkAFkxAFkihx=0
43 1 42 syl φFkAFkxAFkihx=0
44 43 adantr φkFkAFkxAFkihx=0
45 41 44 mpbid φkFkxAFkihx=0
46 45 simpld φkFk
47 oveq1 x=FkxihB=FkihB
48 eqid xxihB=xxihB
49 ovex FkihBV
50 47 48 49 fvmpt FkxxihBFk=FkihB
51 46 50 syl φkxxihBFk=FkihB
52 oveq2 x=BFkihx=FkihB
53 52 eqeq1d x=BFkihx=0FkihB=0
54 45 simprd φkxAFkihx=0
55 4 adantr φkBA
56 53 54 55 rspcdva φkFkihB=0
57 51 56 eqtrd φkxxihBFk=0
58 ocss AA
59 1 58 syl φA
60 3 59 fssd φF:
61 fvco3 F:kxxihBFk=xxihBFk
62 60 61 sylan φkxxihBFk=xxihBFk
63 c0ex 0V
64 63 fvconst2 k×0k=0
65 64 adantl φk×0k=0
66 57 62 65 3eqtr4d φkxxihBFk=×0k
67 66 ralrimiva φkxxihBFk=×0k
68 ovex xihBV
69 68 48 fnmpti xxihBFn
70 fnfco xxihBFnF:xxihBFFn
71 69 60 70 sylancr φxxihBFFn
72 63 fconst ×0:0
73 ffn ×0:0×0Fn
74 72 73 ax-mp ×0Fn
75 eqfnfv xxihBFFn×0FnxxihBF=×0kxxihBFk=×0k
76 71 74 75 sylancl φxxihBF=×0kxxihBFk=×0k
77 67 76 mpbird φxxihBF=×0
78 fvex vFV
79 78 hlimveci FvvFvF
80 oveq1 x=vFxihB=vFihB
81 ovex vFihBV
82 80 48 81 fvmpt vFxxihBvF=vFihB
83 19 79 82 3syl φxxihBvF=vFihB
84 40 77 83 3brtr3d φ×0tTopOpenfldvFihB
85 5 cnfldtopon TopOpenfldTopOn
86 85 a1i φTopOpenfldTopOn
87 0cnd φ0
88 1zzd φ1
89 nnuz =1
90 89 lmconst TopOpenfldTopOn01×0tTopOpenfld0
91 86 87 88 90 syl3anc φ×0tTopOpenfld0
92 7 84 91 lmmo φvFihB=0