Metamath Proof Explorer


Theorem omeulem1

Description: Lemma for omeu : existence part. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion omeulem1 AOnBOnAxOnyAA𝑜x+𝑜y=B

Proof

Step Hyp Ref Expression
1 simp2 AOnBOnABOn
2 onsucb BOnsucBOn
3 1 2 sylib AOnBOnAsucBOn
4 simp1 AOnBOnAAOn
5 on0eln0 AOnAA
6 5 biimpar AOnAA
7 6 3adant2 AOnBOnAA
8 omword2 sucBOnAOnAsucBA𝑜sucB
9 3 4 7 8 syl21anc AOnBOnAsucBA𝑜sucB
10 sucidg BOnBsucB
11 ssel sucBA𝑜sucBBsucBBA𝑜sucB
12 10 11 syl5 sucBA𝑜sucBBOnBA𝑜sucB
13 9 1 12 sylc AOnBOnABA𝑜sucB
14 suceq x=Bsucx=sucB
15 14 oveq2d x=BA𝑜sucx=A𝑜sucB
16 15 eleq2d x=BBA𝑜sucxBA𝑜sucB
17 16 rspcev BOnBA𝑜sucBxOnBA𝑜sucx
18 1 13 17 syl2anc AOnBOnAxOnBA𝑜sucx
19 suceq x=zsucx=sucz
20 19 oveq2d x=zA𝑜sucx=A𝑜sucz
21 20 eleq2d x=zBA𝑜sucxBA𝑜sucz
22 21 onminex xOnBA𝑜sucxxOnBA𝑜sucxzx¬BA𝑜sucz
23 vex xV
24 23 elon xOnOrdx
25 ordzsl Ordxx=wOnx=sucwLimx
26 24 25 bitri xOnx=wOnx=sucwLimx
27 oveq2 x=A𝑜x=A𝑜
28 om0 AOnA𝑜=
29 27 28 sylan9eqr AOnx=A𝑜x=
30 ne0i BA𝑜xA𝑜x
31 30 necon2bi A𝑜x=¬BA𝑜x
32 29 31 syl AOnx=¬BA𝑜x
33 32 ex AOnx=¬BA𝑜x
34 33 a1d AOnzx¬BA𝑜suczx=¬BA𝑜x
35 34 3ad2ant1 AOnBOnAzx¬BA𝑜suczx=¬BA𝑜x
36 35 imp AOnBOnAzx¬BA𝑜suczx=¬BA𝑜x
37 simp3 AOnBOnAzx¬BA𝑜suczx=sucwx=sucw
38 simp2 AOnBOnAzx¬BA𝑜suczx=sucwzx¬BA𝑜sucz
39 raleq x=sucwzx¬BA𝑜suczzsucw¬BA𝑜sucz
40 vex wV
41 40 sucid wsucw
42 suceq z=wsucz=sucw
43 42 oveq2d z=wA𝑜sucz=A𝑜sucw
44 43 eleq2d z=wBA𝑜suczBA𝑜sucw
45 44 notbid z=w¬BA𝑜sucz¬BA𝑜sucw
46 45 rspcv wsucwzsucw¬BA𝑜sucz¬BA𝑜sucw
47 41 46 ax-mp zsucw¬BA𝑜sucz¬BA𝑜sucw
48 39 47 syl6bi x=sucwzx¬BA𝑜sucz¬BA𝑜sucw
49 37 38 48 sylc AOnBOnAzx¬BA𝑜suczx=sucw¬BA𝑜sucw
50 oveq2 x=sucwA𝑜x=A𝑜sucw
51 50 eleq2d x=sucwBA𝑜xBA𝑜sucw
52 51 notbid x=sucw¬BA𝑜x¬BA𝑜sucw
53 52 biimpar x=sucw¬BA𝑜sucw¬BA𝑜x
54 37 49 53 syl2anc AOnBOnAzx¬BA𝑜suczx=sucw¬BA𝑜x
55 54 3expia AOnBOnAzx¬BA𝑜suczx=sucw¬BA𝑜x
56 55 rexlimdvw AOnBOnAzx¬BA𝑜suczwOnx=sucw¬BA𝑜x
57 ralnex zx¬BA𝑜sucz¬zxBA𝑜sucz
58 simpr LimxAOnAOn
59 23 a1i LimxAOnxV
60 simpl LimxAOnLimx
61 omlim AOnxVLimxA𝑜x=zxA𝑜z
62 58 59 60 61 syl12anc LimxAOnA𝑜x=zxA𝑜z
63 62 eleq2d LimxAOnBA𝑜xBzxA𝑜z
64 eliun BzxA𝑜zzxBA𝑜z
65 limord LimxOrdx
66 65 3ad2ant1 LimxAOnzxOrdx
67 66 24 sylibr LimxAOnzxxOn
68 simp3 LimxAOnzxzx
69 onelon xOnzxzOn
70 67 68 69 syl2anc LimxAOnzxzOn
71 onsuc zOnsuczOn
72 70 71 syl LimxAOnzxsuczOn
73 simp2 LimxAOnzxAOn
74 sssucid zsucz
75 omwordi zOnsuczOnAOnzsuczA𝑜zA𝑜sucz
76 74 75 mpi zOnsuczOnAOnA𝑜zA𝑜sucz
77 70 72 73 76 syl3anc LimxAOnzxA𝑜zA𝑜sucz
78 77 sseld LimxAOnzxBA𝑜zBA𝑜sucz
79 78 3expia LimxAOnzxBA𝑜zBA𝑜sucz
80 79 reximdvai LimxAOnzxBA𝑜zzxBA𝑜sucz
81 64 80 biimtrid LimxAOnBzxA𝑜zzxBA𝑜sucz
82 63 81 sylbid LimxAOnBA𝑜xzxBA𝑜sucz
83 82 con3d LimxAOn¬zxBA𝑜sucz¬BA𝑜x
84 57 83 biimtrid LimxAOnzx¬BA𝑜sucz¬BA𝑜x
85 84 expimpd LimxAOnzx¬BA𝑜sucz¬BA𝑜x
86 85 com12 AOnzx¬BA𝑜suczLimx¬BA𝑜x
87 86 3ad2antl1 AOnBOnAzx¬BA𝑜suczLimx¬BA𝑜x
88 36 56 87 3jaod AOnBOnAzx¬BA𝑜suczx=wOnx=sucwLimx¬BA𝑜x
89 26 88 biimtrid AOnBOnAzx¬BA𝑜suczxOn¬BA𝑜x
90 89 impr AOnBOnAzx¬BA𝑜suczxOn¬BA𝑜x
91 simpl1 AOnBOnAzx¬BA𝑜suczxOnAOn
92 simprr AOnBOnAzx¬BA𝑜suczxOnxOn
93 omcl AOnxOnA𝑜xOn
94 91 92 93 syl2anc AOnBOnAzx¬BA𝑜suczxOnA𝑜xOn
95 simpl2 AOnBOnAzx¬BA𝑜suczxOnBOn
96 ontri1 A𝑜xOnBOnA𝑜xB¬BA𝑜x
97 94 95 96 syl2anc AOnBOnAzx¬BA𝑜suczxOnA𝑜xB¬BA𝑜x
98 90 97 mpbird AOnBOnAzx¬BA𝑜suczxOnA𝑜xB
99 oawordex A𝑜xOnBOnA𝑜xByOnA𝑜x+𝑜y=B
100 94 95 99 syl2anc AOnBOnAzx¬BA𝑜suczxOnA𝑜xByOnA𝑜x+𝑜y=B
101 98 100 mpbid AOnBOnAzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=B
102 101 3adantr1 AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=B
103 simp3r AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BA𝑜x+𝑜y=B
104 simp21 AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BBA𝑜sucx
105 simp11 AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BAOn
106 simp23 AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BxOn
107 omsuc AOnxOnA𝑜sucx=A𝑜x+𝑜A
108 105 106 107 syl2anc AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BA𝑜sucx=A𝑜x+𝑜A
109 104 108 eleqtrd AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BBA𝑜x+𝑜A
110 103 109 eqeltrd AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BA𝑜x+𝑜yA𝑜x+𝑜A
111 simp3l AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByOn
112 105 106 93 syl2anc AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=BA𝑜xOn
113 oaord yOnAOnA𝑜xOnyAA𝑜x+𝑜yA𝑜x+𝑜A
114 111 105 112 113 syl3anc AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByAA𝑜x+𝑜yA𝑜x+𝑜A
115 110 114 mpbird AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByA
116 115 103 jca AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByAA𝑜x+𝑜y=B
117 116 3expia AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByAA𝑜x+𝑜y=B
118 117 reximdv2 AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyOnA𝑜x+𝑜y=ByAA𝑜x+𝑜y=B
119 102 118 mpd AOnBOnABA𝑜sucxzx¬BA𝑜suczxOnyAA𝑜x+𝑜y=B
120 119 expcom BA𝑜sucxzx¬BA𝑜suczxOnAOnBOnAyAA𝑜x+𝑜y=B
121 120 3expia BA𝑜sucxzx¬BA𝑜suczxOnAOnBOnAyAA𝑜x+𝑜y=B
122 121 com13 AOnBOnAxOnBA𝑜sucxzx¬BA𝑜suczyAA𝑜x+𝑜y=B
123 122 reximdvai AOnBOnAxOnBA𝑜sucxzx¬BA𝑜suczxOnyAA𝑜x+𝑜y=B
124 22 123 syl5 AOnBOnAxOnBA𝑜sucxxOnyAA𝑜x+𝑜y=B
125 18 124 mpd AOnBOnAxOnyAA𝑜x+𝑜y=B