| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimdecfgtioc.x |
|
| 2 |
|
pimdecfgtioc.a |
|
| 3 |
|
pimdecfgtioc.f |
|
| 4 |
|
pimdecfgtioc.i |
|
| 5 |
|
pimdecfgtioc.r |
|
| 6 |
|
pimdecfgtioc.y |
|
| 7 |
|
pimdecfgtioc.c |
|
| 8 |
|
pimdecfgtioc.e |
|
| 9 |
|
pimdecfgtioc.d |
|
| 10 |
|
ssrab2 |
|
| 11 |
6 10
|
eqsstri |
|
| 12 |
11
|
a1i |
|
| 13 |
12 2
|
sstrd |
|
| 14 |
13 7 8 9
|
ressiocsup |
|
| 15 |
14 12
|
ssind |
|
| 16 |
|
elinel2 |
|
| 17 |
16
|
adantl |
|
| 18 |
5
|
adantr |
|
| 19 |
11 8
|
sselid |
|
| 20 |
3 19
|
ffvelcdmd |
|
| 21 |
20
|
adantr |
|
| 22 |
3
|
adantr |
|
| 23 |
22 17
|
ffvelcdmd |
|
| 24 |
8 6
|
eleqtrdi |
|
| 25 |
|
nfrab1 |
|
| 26 |
6 25
|
nfcxfr |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfcv |
|
| 29 |
26 27 28
|
nfsup |
|
| 30 |
7 29
|
nfcxfr |
|
| 31 |
|
nfcv |
|
| 32 |
|
nfcv |
|
| 33 |
|
nfcv |
|
| 34 |
33 30
|
nffv |
|
| 35 |
32 28 34
|
nfbr |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
breq2d |
|
| 38 |
30 31 35 37
|
elrabf |
|
| 39 |
24 38
|
sylib |
|
| 40 |
39
|
simprd |
|
| 41 |
40
|
adantr |
|
| 42 |
19
|
adantr |
|
| 43 |
4
|
r19.21bi |
|
| 44 |
17 43
|
syldan |
|
| 45 |
42 44
|
jca |
|
| 46 |
|
mnfxr |
|
| 47 |
46
|
a1i |
|
| 48 |
|
ressxr |
|
| 49 |
13 8
|
sseldd |
|
| 50 |
48 49
|
sselid |
|
| 51 |
50
|
adantr |
|
| 52 |
|
elinel1 |
|
| 53 |
52 9
|
eleqtrdi |
|
| 54 |
53
|
adantl |
|
| 55 |
|
iocleub |
|
| 56 |
47 51 54 55
|
syl3anc |
|
| 57 |
|
breq2 |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
breq1d |
|
| 60 |
57 59
|
imbi12d |
|
| 61 |
60
|
rspcva |
|
| 62 |
45 56 61
|
sylc |
|
| 63 |
18 21 23 41 62
|
xrltletrd |
|
| 64 |
17 63
|
jca |
|
| 65 |
6
|
reqabi |
|
| 66 |
64 65
|
sylibr |
|
| 67 |
66
|
ex |
|
| 68 |
1 67
|
ralrimi |
|
| 69 |
|
nfv |
|
| 70 |
69
|
nfci |
|
| 71 |
70 26
|
dfss3f |
|
| 72 |
68 71
|
sylibr |
|
| 73 |
15 72
|
eqssd |
|