Metamath Proof Explorer


Theorem pimdecfgtioc

Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimdecfgtioc.x xφ
pimdecfgtioc.a φA
pimdecfgtioc.f φF:A*
pimdecfgtioc.i φxAyAxyFyFx
pimdecfgtioc.r φR*
pimdecfgtioc.y Y=xA|R<Fx
pimdecfgtioc.c S=supY*<
pimdecfgtioc.e φSY
pimdecfgtioc.d I=−∞S
Assertion pimdecfgtioc φY=IA

Proof

Step Hyp Ref Expression
1 pimdecfgtioc.x xφ
2 pimdecfgtioc.a φA
3 pimdecfgtioc.f φF:A*
4 pimdecfgtioc.i φxAyAxyFyFx
5 pimdecfgtioc.r φR*
6 pimdecfgtioc.y Y=xA|R<Fx
7 pimdecfgtioc.c S=supY*<
8 pimdecfgtioc.e φSY
9 pimdecfgtioc.d I=−∞S
10 ssrab2 xA|R<FxA
11 6 10 eqsstri YA
12 11 a1i φYA
13 12 2 sstrd φY
14 13 7 8 9 ressiocsup φYI
15 14 12 ssind φYIA
16 elinel2 xIAxA
17 16 adantl φxIAxA
18 5 adantr φxIAR*
19 11 8 sselid φSA
20 3 19 ffvelcdmd φFS*
21 20 adantr φxIAFS*
22 3 adantr φxIAF:A*
23 22 17 ffvelcdmd φxIAFx*
24 8 6 eleqtrdi φSxA|R<Fx
25 nfrab1 _xxA|R<Fx
26 6 25 nfcxfr _xY
27 nfcv _x*
28 nfcv _x<
29 26 27 28 nfsup _xsupY*<
30 7 29 nfcxfr _xS
31 nfcv _xA
32 nfcv _xR
33 nfcv _xF
34 33 30 nffv _xFS
35 32 28 34 nfbr xR<FS
36 fveq2 x=SFx=FS
37 36 breq2d x=SR<FxR<FS
38 30 31 35 37 elrabf SxA|R<FxSAR<FS
39 24 38 sylib φSAR<FS
40 39 simprd φR<FS
41 40 adantr φxIAR<FS
42 19 adantr φxIASA
43 4 r19.21bi φxAyAxyFyFx
44 17 43 syldan φxIAyAxyFyFx
45 42 44 jca φxIASAyAxyFyFx
46 mnfxr −∞*
47 46 a1i φxIA−∞*
48 ressxr *
49 13 8 sseldd φS
50 48 49 sselid φS*
51 50 adantr φxIAS*
52 elinel1 xIAxI
53 52 9 eleqtrdi xIAx−∞S
54 53 adantl φxIAx−∞S
55 iocleub −∞*S*x−∞SxS
56 47 51 54 55 syl3anc φxIAxS
57 breq2 y=SxyxS
58 fveq2 y=SFy=FS
59 58 breq1d y=SFyFxFSFx
60 57 59 imbi12d y=SxyFyFxxSFSFx
61 60 rspcva SAyAxyFyFxxSFSFx
62 45 56 61 sylc φxIAFSFx
63 18 21 23 41 62 xrltletrd φxIAR<Fx
64 17 63 jca φxIAxAR<Fx
65 6 reqabi xYxAR<Fx
66 64 65 sylibr φxIAxY
67 66 ex φxIAxY
68 1 67 ralrimi φxIAxY
69 nfv xzIA
70 69 nfci _xIA
71 70 26 dfss3f IAYxIAxY
72 68 71 sylibr φIAY
73 15 72 eqssd φY=IA