| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pj1lmhm.l |  | 
						
							| 2 |  | pj1lmhm.s |  | 
						
							| 3 |  | pj1lmhm.z |  | 
						
							| 4 |  | pj1lmhm.p |  | 
						
							| 5 |  | pj1lmhm.1 |  | 
						
							| 6 |  | pj1lmhm.2 |  | 
						
							| 7 |  | pj1lmhm.3 |  | 
						
							| 8 |  | pj1lmhm.4 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 | lsssssubg |  | 
						
							| 12 | 5 11 | syl |  | 
						
							| 13 | 12 6 | sseldd |  | 
						
							| 14 | 12 7 | sseldd |  | 
						
							| 15 |  | lmodabl |  | 
						
							| 16 | 5 15 | syl |  | 
						
							| 17 | 10 16 13 14 | ablcntzd |  | 
						
							| 18 | 9 2 3 10 13 14 8 17 4 | pj1ghm |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 9 2 3 10 13 14 8 17 4 | pj1id |  | 
						
							| 22 | 21 | adantrl |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 5 | adantr |  | 
						
							| 25 |  | simprl |  | 
						
							| 26 | 6 | adantr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 27 1 | lssss |  | 
						
							| 29 | 26 28 | syl |  | 
						
							| 30 | 13 | adantr |  | 
						
							| 31 | 14 | adantr |  | 
						
							| 32 | 8 | adantr |  | 
						
							| 33 | 17 | adantr |  | 
						
							| 34 | 9 2 3 10 30 31 32 33 4 | pj1f |  | 
						
							| 35 |  | simprr |  | 
						
							| 36 | 34 35 | ffvelcdmd |  | 
						
							| 37 | 29 36 | sseldd |  | 
						
							| 38 | 7 | adantr |  | 
						
							| 39 | 27 1 | lssss |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 | 9 2 3 10 30 31 32 33 4 | pj2f |  | 
						
							| 42 | 41 35 | ffvelcdmd |  | 
						
							| 43 | 40 42 | sseldd |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 27 9 19 44 45 | lmodvsdi |  | 
						
							| 47 | 24 25 37 43 46 | syl13anc |  | 
						
							| 48 | 23 47 | eqtrd |  | 
						
							| 49 | 1 2 | lsmcl |  | 
						
							| 50 | 5 6 7 49 | syl3anc |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 19 44 45 1 | lssvscl |  | 
						
							| 53 | 24 51 25 35 52 | syl22anc |  | 
						
							| 54 | 19 44 45 1 | lssvscl |  | 
						
							| 55 | 24 26 25 36 54 | syl22anc |  | 
						
							| 56 | 19 44 45 1 | lssvscl |  | 
						
							| 57 | 24 38 25 42 56 | syl22anc |  | 
						
							| 58 | 9 2 3 10 30 31 32 33 4 53 55 57 | pj1eq |  | 
						
							| 59 | 48 58 | mpbid |  | 
						
							| 60 | 59 | simpld |  | 
						
							| 61 | 60 | ralrimivva |  | 
						
							| 62 | 12 50 | sseldd |  | 
						
							| 63 |  | eqid |  | 
						
							| 64 | 63 | subgbas |  | 
						
							| 65 | 62 64 | syl |  | 
						
							| 66 | 65 | raleqdv |  | 
						
							| 67 | 66 | ralbidv |  | 
						
							| 68 | 61 67 | mpbid |  | 
						
							| 69 | 63 1 | lsslmod |  | 
						
							| 70 | 5 50 69 | syl2anc |  | 
						
							| 71 |  | ovex |  | 
						
							| 72 | 63 19 | resssca |  | 
						
							| 73 | 71 72 | ax-mp |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 63 44 | ressvsca |  | 
						
							| 76 | 71 75 | ax-mp |  | 
						
							| 77 | 73 19 45 74 76 44 | islmhm3 |  | 
						
							| 78 | 70 5 77 | syl2anc |  | 
						
							| 79 | 18 20 68 78 | mpbir3and |  |