Metamath Proof Explorer


Theorem ply1mulgsumlem4

Description: Lemma 4 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P=Poly1R
ply1mulgsum.b B=BaseP
ply1mulgsum.a A=coe1K
ply1mulgsum.c C=coe1L
ply1mulgsum.x X=var1R
ply1mulgsum.pm ×˙=P
ply1mulgsum.sm ·˙=P
ply1mulgsum.rm ˙=R
ply1mulgsum.m M=mulGrpP
ply1mulgsum.e ×˙=M
Assertion ply1mulgsumlem4 RRingKBLBfinSupp0Pk0Rl=0kAl˙Ckl·˙k×˙X

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P=Poly1R
2 ply1mulgsum.b B=BaseP
3 ply1mulgsum.a A=coe1K
4 ply1mulgsum.c C=coe1L
5 ply1mulgsum.x X=var1R
6 ply1mulgsum.pm ×˙=P
7 ply1mulgsum.sm ·˙=P
8 ply1mulgsum.rm ˙=R
9 ply1mulgsum.m M=mulGrpP
10 ply1mulgsum.e ×˙=M
11 fvexd RRingKBLB0PV
12 ovexd RRingKBLBk0Rl=0kAl˙Ckl·˙k×˙XV
13 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem2 RRingKBLBs0n0s<nRl=0nAl˙Cnl=0R
14 vex nV
15 csbov12g nVn/kRl=0kAl˙Ckl·˙k×˙X=n/kRl=0kAl˙Ckl·˙n/kk×˙X
16 csbov2g nVn/kRl=0kAl˙Ckl=Rn/kl0kAl˙Ckl
17 id nVnV
18 oveq2 k=n0k=0n
19 fvoveq1 k=nCkl=Cnl
20 19 oveq2d k=nAl˙Ckl=Al˙Cnl
21 18 20 mpteq12dv k=nl0kAl˙Ckl=l0nAl˙Cnl
22 21 adantl nVk=nl0kAl˙Ckl=l0nAl˙Cnl
23 17 22 csbied nVn/kl0kAl˙Ckl=l0nAl˙Cnl
24 23 oveq2d nVRn/kl0kAl˙Ckl=Rl=0nAl˙Cnl
25 16 24 eqtrd nVn/kRl=0kAl˙Ckl=Rl=0nAl˙Cnl
26 csbov1g nVn/kk×˙X=n/kk×˙X
27 csbvarg nVn/kk=n
28 27 oveq1d nVn/kk×˙X=n×˙X
29 26 28 eqtrd nVn/kk×˙X=n×˙X
30 25 29 oveq12d nVn/kRl=0kAl˙Ckl·˙n/kk×˙X=Rl=0nAl˙Cnl·˙n×˙X
31 15 30 eqtrd nVn/kRl=0kAl˙Ckl·˙k×˙X=Rl=0nAl˙Cnl·˙n×˙X
32 14 31 ax-mp n/kRl=0kAl˙Ckl·˙k×˙X=Rl=0nAl˙Cnl·˙n×˙X
33 oveq1 Rl=0nAl˙Cnl=0RRl=0nAl˙Cnl·˙n×˙X=0R·˙n×˙X
34 1 ply1sca RRingR=ScalarP
35 34 3ad2ant1 RRingKBLBR=ScalarP
36 35 ad2antrr RRingKBLBs0n0R=ScalarP
37 36 fveq2d RRingKBLBs0n00R=0ScalarP
38 37 oveq1d RRingKBLBs0n00R·˙n×˙X=0ScalarP·˙n×˙X
39 1 ply1lmod RRingPLMod
40 39 3ad2ant1 RRingKBLBPLMod
41 40 ad2antrr RRingKBLBs0n0PLMod
42 9 2 mgpbas B=BaseM
43 1 ply1ring RRingPRing
44 9 ringmgp PRingMMnd
45 43 44 syl RRingMMnd
46 45 3ad2ant1 RRingKBLBMMnd
47 46 ad2antrr RRingKBLBs0n0MMnd
48 simpr RRingKBLBs0n0n0
49 5 1 2 vr1cl RRingXB
50 49 3ad2ant1 RRingKBLBXB
51 50 ad2antrr RRingKBLBs0n0XB
52 42 10 47 48 51 mulgnn0cld RRingKBLBs0n0n×˙XB
53 eqid ScalarP=ScalarP
54 eqid 0ScalarP=0ScalarP
55 eqid 0P=0P
56 2 53 7 54 55 lmod0vs PLModn×˙XB0ScalarP·˙n×˙X=0P
57 41 52 56 syl2anc RRingKBLBs0n00ScalarP·˙n×˙X=0P
58 38 57 eqtrd RRingKBLBs0n00R·˙n×˙X=0P
59 33 58 sylan9eqr RRingKBLBs0n0Rl=0nAl˙Cnl=0RRl=0nAl˙Cnl·˙n×˙X=0P
60 32 59 eqtrid RRingKBLBs0n0Rl=0nAl˙Cnl=0Rn/kRl=0kAl˙Ckl·˙k×˙X=0P
61 60 ex RRingKBLBs0n0Rl=0nAl˙Cnl=0Rn/kRl=0kAl˙Ckl·˙k×˙X=0P
62 61 imim2d RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rs<nn/kRl=0kAl˙Ckl·˙k×˙X=0P
63 62 ralimdva RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rn0s<nn/kRl=0kAl˙Ckl·˙k×˙X=0P
64 63 reximdva RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rs0n0s<nn/kRl=0kAl˙Ckl·˙k×˙X=0P
65 13 64 mpd RRingKBLBs0n0s<nn/kRl=0kAl˙Ckl·˙k×˙X=0P
66 11 12 65 mptnn0fsupp RRingKBLBfinSupp0Pk0Rl=0kAl˙Ckl·˙k×˙X