Description: Lemma 4 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1mulgsum.p | |
|
ply1mulgsum.b | |
||
ply1mulgsum.a | |
||
ply1mulgsum.c | |
||
ply1mulgsum.x | |
||
ply1mulgsum.pm | |
||
ply1mulgsum.sm | |
||
ply1mulgsum.rm | |
||
ply1mulgsum.m | |
||
ply1mulgsum.e | |
||
Assertion | ply1mulgsumlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mulgsum.p | |
|
2 | ply1mulgsum.b | |
|
3 | ply1mulgsum.a | |
|
4 | ply1mulgsum.c | |
|
5 | ply1mulgsum.x | |
|
6 | ply1mulgsum.pm | |
|
7 | ply1mulgsum.sm | |
|
8 | ply1mulgsum.rm | |
|
9 | ply1mulgsum.m | |
|
10 | ply1mulgsum.e | |
|
11 | fvexd | |
|
12 | ovexd | |
|
13 | 1 2 3 4 5 6 7 8 9 10 | ply1mulgsumlem2 | |
14 | vex | |
|
15 | csbov12g | |
|
16 | csbov2g | |
|
17 | id | |
|
18 | oveq2 | |
|
19 | fvoveq1 | |
|
20 | 19 | oveq2d | |
21 | 18 20 | mpteq12dv | |
22 | 21 | adantl | |
23 | 17 22 | csbied | |
24 | 23 | oveq2d | |
25 | 16 24 | eqtrd | |
26 | csbov1g | |
|
27 | csbvarg | |
|
28 | 27 | oveq1d | |
29 | 26 28 | eqtrd | |
30 | 25 29 | oveq12d | |
31 | 15 30 | eqtrd | |
32 | 14 31 | ax-mp | |
33 | oveq1 | |
|
34 | 1 | ply1sca | |
35 | 34 | 3ad2ant1 | |
36 | 35 | ad2antrr | |
37 | 36 | fveq2d | |
38 | 37 | oveq1d | |
39 | 1 | ply1lmod | |
40 | 39 | 3ad2ant1 | |
41 | 40 | ad2antrr | |
42 | 9 2 | mgpbas | |
43 | 1 | ply1ring | |
44 | 9 | ringmgp | |
45 | 43 44 | syl | |
46 | 45 | 3ad2ant1 | |
47 | 46 | ad2antrr | |
48 | simpr | |
|
49 | 5 1 2 | vr1cl | |
50 | 49 | 3ad2ant1 | |
51 | 50 | ad2antrr | |
52 | 42 10 47 48 51 | mulgnn0cld | |
53 | eqid | |
|
54 | eqid | |
|
55 | eqid | |
|
56 | 2 53 7 54 55 | lmod0vs | |
57 | 41 52 56 | syl2anc | |
58 | 38 57 | eqtrd | |
59 | 33 58 | sylan9eqr | |
60 | 32 59 | eqtrid | |
61 | 60 | ex | |
62 | 61 | imim2d | |
63 | 62 | ralimdva | |
64 | 63 | reximdva | |
65 | 13 64 | mpd | |
66 | 11 12 65 | mptnn0fsupp | |