Metamath Proof Explorer


Theorem plyremlem

Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis plyrem.1 G=Xpf×A
Assertion plyremlem AGPolydegG=1G-10=A

Proof

Step Hyp Ref Expression
1 plyrem.1 G=Xpf×A
2 ssid
3 ax-1cn 1
4 plyid 1XpPoly
5 2 3 4 mp2an XpPoly
6 plyconst A×APoly
7 2 6 mpan A×APoly
8 plysubcl XpPoly×APolyXpf×APoly
9 5 7 8 sylancr AXpf×APoly
10 1 9 eqeltrid AGPoly
11 negcl AA
12 addcom Az-A+z=z+A
13 11 12 sylan Az-A+z=z+A
14 negsub zAz+A=zA
15 14 ancoms Azz+A=zA
16 13 15 eqtrd Az-A+z=zA
17 16 mpteq2dva Az-A+z=zzA
18 cnex V
19 18 a1i AV
20 negex AV
21 20 a1i AzAV
22 simpr Azz
23 fconstmpt ×A=zA
24 23 a1i A×A=zA
25 df-idp Xp=I
26 mptresid I=zz
27 25 26 eqtri Xp=zz
28 27 a1i AXp=zz
29 19 21 22 24 28 offval2 A×A+fXp=z-A+z
30 simpl AzA
31 fconstmpt ×A=zA
32 31 a1i A×A=zA
33 19 22 30 28 32 offval2 AXpf×A=zzA
34 17 29 33 3eqtr4d A×A+fXp=Xpf×A
35 34 1 eqtr4di A×A+fXp=G
36 35 fveq2d Adeg×A+fXp=degG
37 plyconst A×APoly
38 2 11 37 sylancr A×APoly
39 5 a1i AXpPoly
40 0dgr Adeg×A=0
41 11 40 syl Adeg×A=0
42 0lt1 0<1
43 41 42 eqbrtrdi Adeg×A<1
44 eqid deg×A=deg×A
45 dgrid degXp=1
46 45 eqcomi 1=degXp
47 44 46 dgradd2 ×APolyXpPolydeg×A<1deg×A+fXp=1
48 38 39 43 47 syl3anc Adeg×A+fXp=1
49 36 48 eqtr3d AdegG=1
50 1 33 eqtrid AG=zzA
51 50 fveq1d AGz=zzAz
52 51 adantr AzGz=zzAz
53 ovex zAV
54 eqid zzA=zzA
55 54 fvmpt2 zzAVzzAz=zA
56 22 53 55 sylancl AzzzAz=zA
57 52 56 eqtrd AzGz=zA
58 57 eqeq1d AzGz=0zA=0
59 subeq0 zAzA=0z=A
60 59 ancoms AzzA=0z=A
61 58 60 bitrd AzGz=0z=A
62 61 pm5.32da AzGz=0zz=A
63 plyf GPolyG:
64 ffn G:GFn
65 fniniseg GFnzG-10zGz=0
66 10 63 64 65 4syl AzG-10zGz=0
67 eleq1a Az=Az
68 67 pm4.71rd Az=Azz=A
69 62 66 68 3bitr4d AzG-10z=A
70 velsn zAz=A
71 69 70 bitr4di AzG-10zA
72 71 eqrdv AG-10=A
73 10 49 72 3jca AGPolydegG=1G-10=A