Metamath Proof Explorer


Theorem pmatcoe1fsupp

Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses pmatcoe1fsupp.p P=Poly1R
pmatcoe1fsupp.c C=NMatP
pmatcoe1fsupp.b B=BaseC
pmatcoe1fsupp.0 0˙=0R
Assertion pmatcoe1fsupp NFinRRingMBs0x0s<xiNjNcoe1iMjx=0˙

Proof

Step Hyp Ref Expression
1 pmatcoe1fsupp.p P=Poly1R
2 pmatcoe1fsupp.c C=NMatP
3 pmatcoe1fsupp.b B=BaseC
4 pmatcoe1fsupp.0 0˙=0R
5 ssrab2 vBaseR0|finSupp0˙vBaseR0
6 5 a1i NFinRRingMBvBaseR0|finSupp0˙vBaseR0
7 6 olcd NFinRRingMBuN×Ncoe1MuBaseR0vBaseR0|finSupp0˙vBaseR0
8 inss uN×Ncoe1MuBaseR0vBaseR0|finSupp0˙vBaseR0uN×Ncoe1MuvBaseR0|finSupp0˙vBaseR0
9 7 8 syl NFinRRingMBuN×Ncoe1MuvBaseR0|finSupp0˙vBaseR0
10 xpfi NFinNFinN×NFin
11 10 anidms NFinN×NFin
12 snfi coe1MuFin
13 12 a1i NFinuN×Ncoe1MuFin
14 13 ralrimiva NFinuN×Ncoe1MuFin
15 11 14 jca NFinN×NFinuN×Ncoe1MuFin
16 15 3ad2ant1 NFinRRingMBN×NFinuN×Ncoe1MuFin
17 iunfi N×NFinuN×Ncoe1MuFinuN×Ncoe1MuFin
18 infi uN×Ncoe1MuFinuN×Ncoe1MuvBaseR0|finSupp0˙vFin
19 16 17 18 3syl NFinRRingMBuN×Ncoe1MuvBaseR0|finSupp0˙vFin
20 fvex 0RV
21 4 20 eqeltri 0˙V
22 21 a1i NFinRRingMB0˙V
23 elin wuN×Ncoe1MuvBaseR0|finSupp0˙vwuN×Ncoe1MuwvBaseR0|finSupp0˙v
24 breq1 v=wfinSupp0˙vfinSupp0˙w
25 24 elrab wvBaseR0|finSupp0˙vwBaseR0finSupp0˙w
26 25 simprbi wvBaseR0|finSupp0˙vfinSupp0˙w
27 23 26 simplbiim wuN×Ncoe1MuvBaseR0|finSupp0˙vfinSupp0˙w
28 27 rgen wuN×Ncoe1MuvBaseR0|finSupp0˙vfinSupp0˙w
29 28 a1i NFinRRingMBwuN×Ncoe1MuvBaseR0|finSupp0˙vfinSupp0˙w
30 fsuppmapnn0fiub0 uN×Ncoe1MuvBaseR0|finSupp0˙vBaseR0uN×Ncoe1MuvBaseR0|finSupp0˙vFin0˙VwuN×Ncoe1MuvBaseR0|finSupp0˙vfinSupp0˙ws0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙
31 30 imp uN×Ncoe1MuvBaseR0|finSupp0˙vBaseR0uN×Ncoe1MuvBaseR0|finSupp0˙vFin0˙VwuN×Ncoe1MuvBaseR0|finSupp0˙vfinSupp0˙ws0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙
32 9 19 22 29 31 syl31anc NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙
33 opelxpi iNjNijN×N
34 df-ov iMj=Mij
35 34 fveq2i coe1iMj=coe1Mij
36 fvex coe1MijV
37 36 snid coe1Mijcoe1Mij
38 35 37 eqeltri coe1iMjcoe1Mij
39 38 a1i iNjNcoe1iMjcoe1Mij
40 2fveq3 u=ijcoe1Mu=coe1Mij
41 40 sneqd u=ijcoe1Mu=coe1Mij
42 41 eliuni ijN×Ncoe1iMjcoe1Mijcoe1iMjuN×Ncoe1Mu
43 33 39 42 syl2anc iNjNcoe1iMjuN×Ncoe1Mu
44 43 adantl NFinRRingMBs0x0iNjNcoe1iMjuN×Ncoe1Mu
45 eqid BaseP=BaseP
46 simprl NFinRRingMBs0x0iNjNiN
47 simprr NFinRRingMBs0x0iNjNjN
48 3 eleq2i MBMBaseC
49 48 biimpi MBMBaseC
50 49 3ad2ant3 NFinRRingMBMBaseC
51 50 ad3antrrr NFinRRingMBs0x0iNjNMBaseC
52 51 3 eleqtrrdi NFinRRingMBs0x0iNjNMB
53 2 45 3 46 47 52 matecld NFinRRingMBs0x0iNjNiMjBaseP
54 eqid coe1iMj=coe1iMj
55 eqid 0R=0R
56 eqid BaseR=BaseR
57 54 45 1 55 56 coe1fsupp iMjBasePcoe1iMjvBaseR0|finSupp0Rv
58 53 57 syl NFinRRingMBs0x0iNjNcoe1iMjvBaseR0|finSupp0Rv
59 4 a1i NFinRRingMB0˙=0R
60 59 breq2d NFinRRingMBfinSupp0˙vfinSupp0Rv
61 60 rabbidv NFinRRingMBvBaseR0|finSupp0˙v=vBaseR0|finSupp0Rv
62 61 eleq2d NFinRRingMBcoe1iMjvBaseR0|finSupp0˙vcoe1iMjvBaseR0|finSupp0Rv
63 62 ad3antrrr NFinRRingMBs0x0iNjNcoe1iMjvBaseR0|finSupp0˙vcoe1iMjvBaseR0|finSupp0Rv
64 58 63 mpbird NFinRRingMBs0x0iNjNcoe1iMjvBaseR0|finSupp0˙v
65 44 64 elind NFinRRingMBs0x0iNjNcoe1iMjuN×Ncoe1MuvBaseR0|finSupp0˙v
66 simplr NFinRRingMBs0x0iNjNx0
67 fveq1 w=coe1iMjwz=coe1iMjz
68 67 eqeq1d w=coe1iMjwz=0˙coe1iMjz=0˙
69 68 imbi2d w=coe1iMjs<zwz=0˙s<zcoe1iMjz=0˙
70 breq2 z=xs<zs<x
71 fveqeq2 z=xcoe1iMjz=0˙coe1iMjx=0˙
72 70 71 imbi12d z=xs<zcoe1iMjz=0˙s<xcoe1iMjx=0˙
73 69 72 rspc2v coe1iMjuN×Ncoe1MuvBaseR0|finSupp0˙vx0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙s<xcoe1iMjx=0˙
74 65 66 73 syl2anc NFinRRingMBs0x0iNjNwuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙s<xcoe1iMjx=0˙
75 74 ex NFinRRingMBs0x0iNjNwuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙s<xcoe1iMjx=0˙
76 75 com23 NFinRRingMBs0x0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙iNjNs<xcoe1iMjx=0˙
77 76 impancom NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0iNjNs<xcoe1iMjx=0˙
78 77 imp NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0iNjNs<xcoe1iMjx=0˙
79 78 com23 NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0s<xiNjNcoe1iMjx=0˙
80 79 ralrimdvv NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0s<xiNjNcoe1iMjx=0˙
81 80 ralrimiva NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0s<xiNjNcoe1iMjx=0˙
82 81 ex NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙x0s<xiNjNcoe1iMjx=0˙
83 82 reximdva NFinRRingMBs0wuN×Ncoe1MuvBaseR0|finSupp0˙vz0s<zwz=0˙s0x0s<xiNjNcoe1iMjx=0˙
84 32 83 mpd NFinRRingMBs0x0s<xiNjNcoe1iMjx=0˙