Step |
Hyp |
Ref |
Expression |
1 |
|
haustop |
|
2 |
1
|
ssriv |
|
3 |
|
fss |
|
4 |
2 3
|
mpan2 |
|
5 |
|
pttop |
|
6 |
4 5
|
sylan2 |
|
7 |
|
simprl |
|
8 |
|
eqid |
|
9 |
8
|
ptuni |
|
10 |
4 9
|
sylan2 |
|
11 |
10
|
adantr |
|
12 |
7 11
|
eleqtrrd |
|
13 |
|
ixpfn |
|
14 |
12 13
|
syl |
|
15 |
|
simprr |
|
16 |
15 11
|
eleqtrrd |
|
17 |
|
ixpfn |
|
18 |
16 17
|
syl |
|
19 |
|
eqfnfv |
|
20 |
14 18 19
|
syl2anc |
|
21 |
20
|
necon3abid |
|
22 |
|
rexnal |
|
23 |
|
df-ne |
|
24 |
|
simpllr |
|
25 |
|
simprl |
|
26 |
24 25
|
ffvelrnd |
|
27 |
|
vex |
|
28 |
27
|
elixp |
|
29 |
28
|
simprbi |
|
30 |
12 29
|
syl |
|
31 |
30
|
r19.21bi |
|
32 |
31
|
adantrr |
|
33 |
|
vex |
|
34 |
33
|
elixp |
|
35 |
34
|
simprbi |
|
36 |
16 35
|
syl |
|
37 |
36
|
r19.21bi |
|
38 |
37
|
adantrr |
|
39 |
|
simprr |
|
40 |
|
eqid |
|
41 |
40
|
hausnei |
|
42 |
26 32 38 39 41
|
syl13anc |
|
43 |
|
simp-4l |
|
44 |
4
|
ad4antlr |
|
45 |
25
|
adantr |
|
46 |
|
eqid |
|
47 |
46 8
|
ptpjcn |
|
48 |
43 44 45 47
|
syl3anc |
|
49 |
|
simprll |
|
50 |
|
eqid |
|
51 |
50
|
mptpreima |
|
52 |
|
cnima |
|
53 |
51 52
|
eqeltrrid |
|
54 |
48 49 53
|
syl2anc |
|
55 |
|
simprlr |
|
56 |
50
|
mptpreima |
|
57 |
|
cnima |
|
58 |
56 57
|
eqeltrrid |
|
59 |
48 55 58
|
syl2anc |
|
60 |
|
fveq1 |
|
61 |
60
|
eleq1d |
|
62 |
7
|
ad2antrr |
|
63 |
|
simprr1 |
|
64 |
61 62 63
|
elrabd |
|
65 |
|
fveq1 |
|
66 |
65
|
eleq1d |
|
67 |
15
|
ad2antrr |
|
68 |
|
simprr2 |
|
69 |
66 67 68
|
elrabd |
|
70 |
|
inrab |
|
71 |
|
simprr3 |
|
72 |
|
inelcm |
|
73 |
72
|
necon2bi |
|
74 |
71 73
|
syl |
|
75 |
74
|
ralrimivw |
|
76 |
|
rabeq0 |
|
77 |
75 76
|
sylibr |
|
78 |
70 77
|
eqtrid |
|
79 |
|
eleq2 |
|
80 |
|
ineq1 |
|
81 |
80
|
eqeq1d |
|
82 |
79 81
|
3anbi13d |
|
83 |
|
eleq2 |
|
84 |
|
ineq2 |
|
85 |
84
|
eqeq1d |
|
86 |
83 85
|
3anbi23d |
|
87 |
82 86
|
rspc2ev |
|
88 |
54 59 64 69 78 87
|
syl113anc |
|
89 |
88
|
expr |
|
90 |
89
|
rexlimdvva |
|
91 |
42 90
|
mpd |
|
92 |
91
|
expr |
|
93 |
23 92
|
syl5bir |
|
94 |
93
|
rexlimdva |
|
95 |
22 94
|
syl5bir |
|
96 |
21 95
|
sylbid |
|
97 |
96
|
ralrimivva |
|
98 |
46
|
ishaus |
|
99 |
6 97 98
|
sylanbrc |
|