Metamath Proof Explorer


Theorem rrndistlt

Description: Given two points in the space of n-dimensional real numbers, if every component is closer than E then the distance between the two points is less then ( ( sqrtn ) x. E ) . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrndistlt.i φIFin
rrndistlt.z φI
rrndistlt.n N=I
rrndistlt.x φXI
rrndistlt.y φYI
rrndistlt.l φiIXiYi<E
rrndistlt.e φE+
rrndistlt.d D=distmsup
Assertion rrndistlt φXDY<NE

Proof

Step Hyp Ref Expression
1 rrndistlt.i φIFin
2 rrndistlt.z φI
3 rrndistlt.n N=I
4 rrndistlt.x φXI
5 rrndistlt.y φYI
6 rrndistlt.l φiIXiYi<E
7 rrndistlt.e φE+
8 rrndistlt.d D=distmsup
9 elmapi XIX:I
10 4 9 syl φX:I
11 ax-resscn
12 11 a1i φ
13 10 12 fssd φX:I
14 13 ffvelcdmda φiIXi
15 elmapi YIY:I
16 5 15 syl φY:I
17 16 12 fssd φY:I
18 17 ffvelcdmda φiIYi
19 14 18 subcld φiIXiYi
20 19 abscld φiIXiYi
21 20 resqcld φiIXiYi2
22 7 rpred φE
23 22 resqcld φE2
24 23 adantr φiIE2
25 19 absge0d φiI0XiYi
26 22 adantr φiIE
27 7 adantr φiIE+
28 27 rpge0d φiI0E
29 lt2sq XiYi0XiYiE0EXiYi<EXiYi2<E2
30 20 25 26 28 29 syl22anc φiIXiYi<EXiYi2<E2
31 6 30 mpbid φiIXiYi2<E2
32 1 2 21 24 31 fsumlt φiIXiYi2<iIE2
33 10 ffvelcdmda φiIXi
34 16 ffvelcdmda φiIYi
35 33 34 resubcld φiIXiYi
36 absresq XiYiXiYi2=XiYi2
37 35 36 syl φiIXiYi2=XiYi2
38 37 eqcomd φiIXiYi2=XiYi2
39 38 sumeq2dv φiIXiYi2=iIXiYi2
40 11 23 sselid φE2
41 fsumconst IFinE2iIE2=IE2
42 1 40 41 syl2anc φiIE2=IE2
43 eqcom N=II=N
44 3 43 mpbi I=N
45 44 oveq1i IE2=NE2
46 45 a1i φIE2=NE2
47 42 46 eqtr2d φNE2=iIE2
48 39 47 breq12d φiIXiYi2<NE2iIXiYi2<iIE2
49 32 48 mpbird φiIXiYi2<NE2
50 nfv iφ
51 35 resqcld φiIXiYi2
52 50 1 51 fsumreclf φiIXiYi2
53 35 sqge0d φiI0XiYi2
54 1 51 53 fsumge0 φ0iIXiYi2
55 hashcl IFinI0
56 1 55 syl φI0
57 3 56 eqeltrid φN0
58 57 nn0red φN
59 58 23 remulcld φNE2
60 57 nn0ge0d φ0N
61 22 sqge0d φ0E2
62 58 23 60 61 mulge0d φ0NE2
63 52 54 59 62 sqrtltd φiIXiYi2<NE2iIXiYi2<NE2
64 49 63 mpbid φiIXiYi2<NE2
65 8 a1i φD=distmsup
66 eqid msup=msup
67 eqid I=I
68 66 67 rrxdsfi IFindistmsup=fI,gIiIfigi2
69 1 68 syl φdistmsup=fI,gIiIfigi2
70 65 69 eqtrd φD=fI,gIiIfigi2
71 fveq1 f=Xfi=Xi
72 71 adantr f=Xg=Yfi=Xi
73 fveq1 g=Ygi=Yi
74 73 adantl f=Xg=Ygi=Yi
75 72 74 oveq12d f=Xg=Yfigi=XiYi
76 75 oveq1d f=Xg=Yfigi2=XiYi2
77 76 sumeq2sdv f=Xg=YiIfigi2=iIXiYi2
78 77 fveq2d f=Xg=YiIfigi2=iIXiYi2
79 78 adantl φf=Xg=YiIfigi2=iIXiYi2
80 52 54 resqrtcld φiIXiYi2
81 70 79 4 5 80 ovmpod φXDY=iIXiYi2
82 sqrtmul N0NE20E2NE2=NE2
83 58 60 23 61 82 syl22anc φNE2=NE2
84 7 rpge0d φ0E
85 22 84 sqrtsqd φE2=E
86 85 oveq2d φNE2=NE
87 83 86 eqtr2d φNE=NE2
88 81 87 breq12d φXDY<NEiIXiYi2<NE2
89 64 88 mpbird φXDY<NE