Metamath Proof Explorer


Theorem rrndstprj2

Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X=I
rrndstprj1.1 M=abs2
Assertion rrndstprj2 IFinFXGXR+nIFnMGn<RFnIG<RI

Proof

Step Hyp Ref Expression
1 rrnval.1 X=I
2 rrndstprj1.1 M=abs2
3 simpl1 IFinFXGXR+nIFnMGn<RIFin
4 3 eldifad IFinFXGXR+nIFnMGn<RIFin
5 simpl2 IFinFXGXR+nIFnMGn<RFX
6 simpl3 IFinFXGXR+nIFnMGn<RGX
7 1 rrnmval IFinFXGXFnIG=kIFkGk2
8 4 5 6 7 syl3anc IFinFXGXR+nIFnMGn<RFnIG=kIFkGk2
9 eldifsni IFinI
10 3 9 syl IFinFXGXR+nIFnMGn<RI
11 5 1 eleqtrdi IFinFXGXR+nIFnMGn<RFI
12 elmapi FIF:I
13 11 12 syl IFinFXGXR+nIFnMGn<RF:I
14 13 ffvelcdmda IFinFXGXR+nIFnMGn<RkIFk
15 6 1 eleqtrdi IFinFXGXR+nIFnMGn<RGI
16 elmapi GIG:I
17 15 16 syl IFinFXGXR+nIFnMGn<RG:I
18 17 ffvelcdmda IFinFXGXR+nIFnMGn<RkIGk
19 14 18 resubcld IFinFXGXR+nIFnMGn<RkIFkGk
20 19 resqcld IFinFXGXR+nIFnMGn<RkIFkGk2
21 simprl IFinFXGXR+nIFnMGn<RR+
22 21 rpred IFinFXGXR+nIFnMGn<RR
23 22 resqcld IFinFXGXR+nIFnMGn<RR2
24 23 adantr IFinFXGXR+nIFnMGn<RkIR2
25 absresq FkGkFkGk2=FkGk2
26 19 25 syl IFinFXGXR+nIFnMGn<RkIFkGk2=FkGk2
27 2 remetdval FkGkFkMGk=FkGk
28 14 18 27 syl2anc IFinFXGXR+nIFnMGn<RkIFkMGk=FkGk
29 simprr IFinFXGXR+nIFnMGn<RnIFnMGn<R
30 fveq2 n=kFn=Fk
31 fveq2 n=kGn=Gk
32 30 31 oveq12d n=kFnMGn=FkMGk
33 32 breq1d n=kFnMGn<RFkMGk<R
34 33 rspccva nIFnMGn<RkIFkMGk<R
35 29 34 sylan IFinFXGXR+nIFnMGn<RkIFkMGk<R
36 28 35 eqbrtrrd IFinFXGXR+nIFnMGn<RkIFkGk<R
37 19 recnd IFinFXGXR+nIFnMGn<RkIFkGk
38 37 abscld IFinFXGXR+nIFnMGn<RkIFkGk
39 22 adantr IFinFXGXR+nIFnMGn<RkIR
40 37 absge0d IFinFXGXR+nIFnMGn<RkI0FkGk
41 21 rpge0d IFinFXGXR+nIFnMGn<R0R
42 41 adantr IFinFXGXR+nIFnMGn<RkI0R
43 38 39 40 42 lt2sqd IFinFXGXR+nIFnMGn<RkIFkGk<RFkGk2<R2
44 36 43 mpbid IFinFXGXR+nIFnMGn<RkIFkGk2<R2
45 26 44 eqbrtrrd IFinFXGXR+nIFnMGn<RkIFkGk2<R2
46 4 10 20 24 45 fsumlt IFinFXGXR+nIFnMGn<RkIFkGk2<kIR2
47 4 20 fsumrecl IFinFXGXR+nIFnMGn<RkIFkGk2
48 19 sqge0d IFinFXGXR+nIFnMGn<RkI0FkGk2
49 4 20 48 fsumge0 IFinFXGXR+nIFnMGn<R0kIFkGk2
50 resqrtth kIFkGk20kIFkGk2kIFkGk22=kIFkGk2
51 47 49 50 syl2anc IFinFXGXR+nIFnMGn<RkIFkGk22=kIFkGk2
52 hashnncl IFinII
53 4 52 syl IFinFXGXR+nIFnMGn<RII
54 10 53 mpbird IFinFXGXR+nIFnMGn<RI
55 54 nnrpd IFinFXGXR+nIFnMGn<RI+
56 55 rpred IFinFXGXR+nIFnMGn<RI
57 55 rpge0d IFinFXGXR+nIFnMGn<R0I
58 resqrtth I0II2=I
59 56 57 58 syl2anc IFinFXGXR+nIFnMGn<RI2=I
60 59 oveq2d IFinFXGXR+nIFnMGn<RR2I2=R2I
61 23 recnd IFinFXGXR+nIFnMGn<RR2
62 55 rpcnd IFinFXGXR+nIFnMGn<RI
63 61 62 mulcomd IFinFXGXR+nIFnMGn<RR2I=IR2
64 60 63 eqtrd IFinFXGXR+nIFnMGn<RR2I2=IR2
65 21 rpcnd IFinFXGXR+nIFnMGn<RR
66 55 rpsqrtcld IFinFXGXR+nIFnMGn<RI+
67 66 rpcnd IFinFXGXR+nIFnMGn<RI
68 65 67 sqmuld IFinFXGXR+nIFnMGn<RRI2=R2I2
69 fsumconst IFinR2kIR2=IR2
70 4 61 69 syl2anc IFinFXGXR+nIFnMGn<RkIR2=IR2
71 64 68 70 3eqtr4d IFinFXGXR+nIFnMGn<RRI2=kIR2
72 46 51 71 3brtr4d IFinFXGXR+nIFnMGn<RkIFkGk22<RI2
73 47 49 resqrtcld IFinFXGXR+nIFnMGn<RkIFkGk2
74 21 66 rpmulcld IFinFXGXR+nIFnMGn<RRI+
75 74 rpred IFinFXGXR+nIFnMGn<RRI
76 47 49 sqrtge0d IFinFXGXR+nIFnMGn<R0kIFkGk2
77 74 rpge0d IFinFXGXR+nIFnMGn<R0RI
78 73 75 76 77 lt2sqd IFinFXGXR+nIFnMGn<RkIFkGk2<RIkIFkGk22<RI2
79 72 78 mpbird IFinFXGXR+nIFnMGn<RkIFkGk2<RI
80 8 79 eqbrtrd IFinFXGXR+nIFnMGn<RFnIG<RI