Metamath Proof Explorer


Theorem rrx2xpref1o

Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from { 1 , 2 } to the real numbers). (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2xpreen.r R=12
rrx2xpref1o.1 F=x,y1x2y
Assertion rrx2xpref1o F:21-1 ontoR

Proof

Step Hyp Ref Expression
1 rrx2xpreen.r R=12
2 rrx2xpref1o.1 F=x,y1x2y
3 prex 1x2yV
4 2 3 fnmpoi FFn2
5 1st2nd2 z2z=1stz2ndz
6 5 fveq2d z2Fz=F1stz2ndz
7 df-ov 1stzF2ndz=F1stz2ndz
8 6 7 eqtr4di z2Fz=1stzF2ndz
9 xp1st z21stz
10 xp2nd z22ndz
11 opeq2 x=1stz1x=11stz
12 11 preq1d x=1stz1x2y=11stz2y
13 opeq2 y=2ndz2y=22ndz
14 13 preq2d y=2ndz11stz2y=11stz22ndz
15 prex 11stz22ndzV
16 12 14 2 15 ovmpo 1stz2ndz1stzF2ndz=11stz22ndz
17 9 10 16 syl2anc z21stzF2ndz=11stz22ndz
18 8 17 eqtrd z2Fz=11stz22ndz
19 eqid 12=12
20 19 1 prelrrx2 1stz2ndz11stz22ndzR
21 9 10 20 syl2anc z211stz22ndzR
22 18 21 eqeltrd z2FzR
23 22 rgen z2FzR
24 ffnfv F:2RFFn2z2FzR
25 4 23 24 mpbir2an F:2R
26 opex 11stzV
27 opex 22ndzV
28 opex 11stwV
29 opex 22ndwV
30 26 27 28 29 preq12b 11stz22ndz=11stw22ndw11stz=11stw22ndz=22ndw11stz=22ndw22ndz=11stw
31 1ex 1V
32 fvex 1stzV
33 31 32 opth 11stz=11stw1=11stz=1stw
34 33 simprbi 11stz=11stw1stz=1stw
35 2ex 2V
36 fvex 2ndzV
37 35 36 opth 22ndz=22ndw2=22ndz=2ndw
38 37 simprbi 22ndz=22ndw2ndz=2ndw
39 34 38 anim12i 11stz=11stw22ndz=22ndw1stz=1stw2ndz=2ndw
40 39 a1d 11stz=11stw22ndz=22ndwz2w21stz=1stw2ndz=2ndw
41 31 32 opth 11stz=22ndw1=21stz=2ndw
42 35 36 opth 22ndz=11stw2=12ndz=1stw
43 1ne2 12
44 eqneqall 1=212z2w21stz=1stw2ndz=2ndw
45 43 44 mpi 1=2z2w21stz=1stw2ndz=2ndw
46 45 ad2antrr 1=21stz=2ndw2=12ndz=1stwz2w21stz=1stw2ndz=2ndw
47 41 42 46 syl2anb 11stz=22ndw22ndz=11stwz2w21stz=1stw2ndz=2ndw
48 40 47 jaoi 11stz=11stw22ndz=22ndw11stz=22ndw22ndz=11stwz2w21stz=1stw2ndz=2ndw
49 30 48 sylbi 11stz22ndz=11stw22ndwz2w21stz=1stw2ndz=2ndw
50 49 com12 z2w211stz22ndz=11stw22ndw1stz=1stw2ndz=2ndw
51 1st2nd2 w2w=1stw2ndw
52 51 fveq2d w2Fw=F1stw2ndw
53 df-ov 1stwF2ndw=F1stw2ndw
54 52 53 eqtr4di w2Fw=1stwF2ndw
55 xp1st w21stw
56 xp2nd w22ndw
57 opeq2 x=1stw1x=11stw
58 57 preq1d x=1stw1x2y=11stw2y
59 opeq2 y=2ndw2y=22ndw
60 59 preq2d y=2ndw11stw2y=11stw22ndw
61 prex 11stw22ndwV
62 58 60 2 61 ovmpo 1stw2ndw1stwF2ndw=11stw22ndw
63 55 56 62 syl2anc w21stwF2ndw=11stw22ndw
64 54 63 eqtrd w2Fw=11stw22ndw
65 18 64 eqeqan12d z2w2Fz=Fw11stz22ndz=11stw22ndw
66 5 51 eqeqan12d z2w2z=w1stz2ndz=1stw2ndw
67 32 36 opth 1stz2ndz=1stw2ndw1stz=1stw2ndz=2ndw
68 66 67 bitrdi z2w2z=w1stz=1stw2ndz=2ndw
69 50 65 68 3imtr4d z2w2Fz=Fwz=w
70 69 rgen2 z2w2Fz=Fwz=w
71 dff13 F:21-1RF:2Rz2w2Fz=Fwz=w
72 25 70 71 mpbir2an F:21-1R
73 1 eleq2i wRw12
74 reex V
75 prex 12V
76 74 75 elmap w12w:12
77 1re 1
78 2re 2
79 fpr2g 12w:12w1w2w=1w12w2
80 77 78 79 mp2an w:12w1w2w=1w12w2
81 73 76 80 3bitri wRw1w2w=1w12w2
82 opeq2 u=w11u=1w1
83 82 preq1d u=w11u2v=1w12v
84 83 eqeq2d u=w1w=1u2vw=1w12v
85 opeq2 v=w22v=2w2
86 85 preq2d v=w21w12v=1w12w2
87 86 eqeq2d v=w2w=1w12vw=1w12w2
88 84 87 rspc2ev w1w2w=1w12w2uvw=1u2v
89 81 88 sylbi wRuvw=1u2v
90 opeq2 x=u1x=1u
91 90 preq1d x=u1x2y=1u2y
92 opeq2 y=v2y=2v
93 92 preq2d y=v1u2y=1u2v
94 prex 1u2vV
95 91 93 2 94 ovmpo uvuFv=1u2v
96 95 eqeq2d uvw=uFvw=1u2v
97 96 2rexbiia uvw=uFvuvw=1u2v
98 89 97 sylibr wRuvw=uFv
99 fveq2 z=uvFz=Fuv
100 df-ov uFv=Fuv
101 99 100 eqtr4di z=uvFz=uFv
102 101 eqeq2d z=uvw=Fzw=uFv
103 102 rexxp z2w=Fzuvw=uFv
104 98 103 sylibr wRz2w=Fz
105 104 rgen wRz2w=Fz
106 dffo3 F:2ontoRF:2RwRz2w=Fz
107 25 105 106 mpbir2an F:2ontoR
108 df-f1o F:21-1 ontoRF:21-1RF:2ontoR
109 72 107 108 mpbir2an F:21-1 ontoR