Metamath Proof Explorer


Theorem salexct

Description: An example of nontrivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct.a φAV
salexct.b S=x𝒫A|xωAxω
Assertion salexct φSSAlg

Proof

Step Hyp Ref Expression
1 salexct.a φAV
2 salexct.b S=x𝒫A|xωAxω
3 1 pwexd φ𝒫AV
4 rabexg 𝒫AVx𝒫A|xωAxωV
5 3 4 syl φx𝒫A|xωAxωV
6 2 5 eqeltrid φSV
7 0elpw 𝒫A
8 7 a1i φ𝒫A
9 0fin Fin
10 fict Finω
11 9 10 ax-mp ω
12 11 orci ωAω
13 12 a1i φωAω
14 8 13 jca φ𝒫AωAω
15 breq1 x=xωω
16 difeq2 x=Ax=A
17 16 breq1d x=AxωAω
18 15 17 orbi12d x=xωAxωωAω
19 18 2 elrab2 S𝒫AωAω
20 14 19 sylibr φS
21 snidg yAyy
22 snelpwi yAy𝒫A
23 snfi yFin
24 fict yFinyω
25 23 24 ax-mp yω
26 25 orci yωAyω
27 26 a1i yAyωAyω
28 22 27 jca yAy𝒫AyωAyω
29 breq1 x=yxωyω
30 difeq2 x=yAx=Ay
31 30 breq1d x=yAxωAyω
32 29 31 orbi12d x=yxωAxωyωAyω
33 32 2 elrab2 ySy𝒫AyωAyω
34 28 33 sylibr yAyS
35 elunii yyySyS
36 21 34 35 syl2anc yAyS
37 36 rgen yAyS
38 dfss3 ASyAyS
39 37 38 mpbir AS
40 ssrab2 x𝒫A|xωAxω𝒫A
41 2 40 eqsstri S𝒫A
42 41 unissi S𝒫A
43 unipw 𝒫A=A
44 42 43 sseqtri SA
45 39 44 eqssi A=S
46 difssd φAxA
47 1 46 ssexd φAxV
48 elpwg AxVAx𝒫AAxA
49 47 48 syl φAx𝒫AAxA
50 46 49 mpbird φAx𝒫A
51 50 ad2antrr φxSxωAx𝒫A
52 41 sseli xSx𝒫A
53 elpwi x𝒫AxA
54 52 53 syl xSxA
55 dfss4 xAAAx=x
56 54 55 sylib xSAAx=x
57 56 ad2antlr φxSxωAAx=x
58 simpr φxSxωxω
59 57 58 eqbrtrd φxSxωAAxω
60 olc AAxωAxωAAxω
61 59 60 syl φxSxωAxωAAxω
62 51 61 jca φxSxωAx𝒫AAxωAAxω
63 breq1 y=AxyωAxω
64 difeq2 y=AxAy=AAx
65 64 breq1d y=AxAyωAAxω
66 63 65 orbi12d y=AxyωAyωAxωAAxω
67 breq1 x=yxωyω
68 difeq2 x=yAx=Ay
69 68 breq1d x=yAxωAyω
70 67 69 orbi12d x=yxωAxωyωAyω
71 70 cbvrabv x𝒫A|xωAxω=y𝒫A|yωAyω
72 2 71 eqtri S=y𝒫A|yωAyω
73 66 72 elrab2 AxSAx𝒫AAxωAAxω
74 62 73 sylibr φxSxωAxS
75 50 ad2antrr φxS¬xωAx𝒫A
76 2 reqabi xSx𝒫AxωAxω
77 76 biimpi xSx𝒫AxωAxω
78 77 simprd xSxωAxω
79 78 adantl φxSxωAxω
80 79 adantr φxS¬xωxωAxω
81 simpr φxS¬xω¬xω
82 pm2.53 xωAxω¬xωAxω
83 80 81 82 sylc φxS¬xωAxω
84 orc AxωAxωAAxω
85 83 84 syl φxS¬xωAxωAAxω
86 75 85 jca φxS¬xωAx𝒫AAxωAAxω
87 86 73 sylibr φxS¬xωAxS
88 74 87 pm2.61dan φxSAxS
89 elpwi x𝒫SxS
90 89 adantr x𝒫SyxxS
91 simpr x𝒫Syxyx
92 90 91 sseldd x𝒫SyxyS
93 41 sseli ySy𝒫A
94 elpwi y𝒫AyA
95 93 94 syl ySyA
96 92 95 syl x𝒫SyxyA
97 96 ralrimiva x𝒫SyxyA
98 unissb xAyxyA
99 97 98 sylibr x𝒫SxA
100 vuniex xV
101 100 elpw x𝒫AxA
102 99 101 sylibr x𝒫Sx𝒫A
103 102 adantr x𝒫Sxωx𝒫A
104 id xωyxyωxωyxyω
105 104 adantll x𝒫Sxωyxyωxωyxyω
106 unictb xωyxyωxω
107 orc xωxωAxω
108 105 106 107 3syl x𝒫SxωyxyωxωAxω
109 rexnal yx¬yω¬yxyω
110 109 bicomi ¬yxyωyx¬yω
111 110 biimpi ¬yxyωyx¬yω
112 111 adantl x𝒫S¬yxyωyx¬yω
113 nfv yx𝒫S
114 nfra1 yyxyω
115 114 nfn y¬yxyω
116 113 115 nfan yx𝒫S¬yxyω
117 nfv yAxω
118 elssuni yxyx
119 118 3ad2ant2 x𝒫Syx¬yωyx
120 119 sscond x𝒫Syx¬yωAxAy
121 92 3adant3 x𝒫Syx¬yωyS
122 simp3 x𝒫Syx¬yω¬yω
123 72 reqabi ySy𝒫AyωAyω
124 123 biimpi ySy𝒫AyωAyω
125 124 simprd ySyωAyω
126 125 adantr yS¬yωyωAyω
127 simpr yS¬yω¬yω
128 pm2.53 yωAyω¬yωAyω
129 126 127 128 sylc yS¬yωAyω
130 121 122 129 syl2anc x𝒫Syx¬yωAyω
131 ssct AxAyAyωAxω
132 120 130 131 syl2anc x𝒫Syx¬yωAxω
133 132 3exp x𝒫Syx¬yωAxω
134 133 adantr x𝒫S¬yxyωyx¬yωAxω
135 116 117 134 rexlimd x𝒫S¬yxyωyx¬yωAxω
136 112 135 mpd x𝒫S¬yxyωAxω
137 olc AxωxωAxω
138 136 137 syl x𝒫S¬yxyωxωAxω
139 138 adantlr x𝒫Sxω¬yxyωxωAxω
140 108 139 pm2.61dan x𝒫SxωxωAxω
141 103 140 jca x𝒫Sxωx𝒫AxωAxω
142 breq1 y=xyωxω
143 difeq2 y=xAy=Ax
144 143 breq1d y=xAyωAxω
145 142 144 orbi12d y=xyωAyωxωAxω
146 145 72 elrab2 xSx𝒫AxωAxω
147 141 146 sylibr x𝒫SxωxS
148 147 3adant1 φx𝒫SxωxS
149 6 20 45 88 148 issald φSSAlg