Metamath Proof Explorer


Theorem sge0pr

Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pr.a φAV
sge0pr.b φBW
sge0pr.d φD0+∞
sge0pr.e φE0+∞
sge0pr.cd k=AC=D
sge0pr.ce k=BC=E
sge0pr.ab φAB
Assertion sge0pr φsum^kABC=D+𝑒E

Proof

Step Hyp Ref Expression
1 sge0pr.a φAV
2 sge0pr.b φBW
3 sge0pr.d φD0+∞
4 sge0pr.e φE0+∞
5 sge0pr.cd k=AC=D
6 sge0pr.ce k=BC=E
7 sge0pr.ab φAB
8 iccssxr 0+∞*
9 8 4 sselid φE*
10 mnfxr −∞*
11 10 a1i φ−∞*
12 0xr 0*
13 12 a1i φ0*
14 mnflt0 −∞<0
15 14 a1i φ−∞<0
16 pnfxr +∞*
17 16 a1i φ+∞*
18 iccgelb 0*+∞*E0+∞0E
19 13 17 4 18 syl3anc φ0E
20 11 13 9 15 19 xrltletrd φ−∞<E
21 11 9 20 xrgtned φE−∞
22 xaddpnf2 E*E−∞+∞+𝑒E=+∞
23 9 21 22 syl2anc φ+∞+𝑒E=+∞
24 23 eqcomd φ+∞=+∞+𝑒E
25 24 adantr φD=+∞+∞=+∞+𝑒E
26 prex ABV
27 26 a1i φD=+∞ABV
28 5 adantl φk=AC=D
29 3 adantr φk=AD0+∞
30 28 29 eqeltrd φk=AC0+∞
31 30 adantlr φkABk=AC0+∞
32 simpll φkAB¬k=Aφ
33 simpl kAB¬k=AkAB
34 neqne ¬k=AkA
35 34 adantl kAB¬k=AkA
36 elprn1 kABkAk=B
37 33 35 36 syl2anc kAB¬k=Ak=B
38 37 adantll φkAB¬k=Ak=B
39 6 adantl φk=BC=E
40 4 adantr φk=BE0+∞
41 39 40 eqeltrd φk=BC0+∞
42 32 38 41 syl2anc φkAB¬k=AC0+∞
43 31 42 pm2.61dan φkABC0+∞
44 eqid kABC=kABC
45 43 44 fmptd φkABC:AB0+∞
46 45 adantr φD=+∞kABC:AB0+∞
47 id D=+∞D=+∞
48 47 eqcomd D=+∞+∞=D
49 48 adantl φD=+∞+∞=D
50 prid1g D0+∞DDE
51 3 50 syl φDDE
52 1 2 44 5 6 rnmptpr φrankABC=DE
53 52 eqcomd φDE=rankABC
54 51 53 eleqtrd φDrankABC
55 54 adantr φD=+∞DrankABC
56 49 55 eqeltrd φD=+∞+∞rankABC
57 27 46 56 sge0pnfval φD=+∞sum^kABC=+∞
58 oveq1 D=+∞D+𝑒E=+∞+𝑒E
59 58 adantl φD=+∞D+𝑒E=+∞+𝑒E
60 25 57 59 3eqtr4d φD=+∞sum^kABC=D+𝑒E
61 8 3 sselid φD*
62 iccgelb 0*+∞*D0+∞0D
63 13 17 3 62 syl3anc φ0D
64 11 13 61 15 63 xrltletrd φ−∞<D
65 11 61 64 xrgtned φD−∞
66 xaddpnf1 D*D−∞D+𝑒+∞=+∞
67 61 65 66 syl2anc φD+𝑒+∞=+∞
68 67 eqcomd φ+∞=D+𝑒+∞
69 68 adantr φE=+∞+∞=D+𝑒+∞
70 26 a1i φE=+∞ABV
71 45 adantr φE=+∞kABC:AB0+∞
72 id E=+∞E=+∞
73 72 eqcomd E=+∞+∞=E
74 73 adantl φE=+∞+∞=E
75 prid2g E0+∞EDE
76 4 75 syl φEDE
77 76 53 eleqtrd φErankABC
78 77 adantr φE=+∞ErankABC
79 74 78 eqeltrd φE=+∞+∞rankABC
80 70 71 79 sge0pnfval φE=+∞sum^kABC=+∞
81 oveq2 E=+∞D+𝑒E=D+𝑒+∞
82 81 adantl φE=+∞D+𝑒E=D+𝑒+∞
83 69 80 82 3eqtr4d φE=+∞sum^kABC=D+𝑒E
84 83 adantlr φ¬D=+∞E=+∞sum^kABC=D+𝑒E
85 rge0ssre 0+∞
86 ax-resscn
87 85 86 sstri 0+∞
88 12 a1i φ¬D=+∞0*
89 16 a1i φ¬D=+∞+∞*
90 61 adantr φ¬D=+∞D*
91 63 adantr φ¬D=+∞0D
92 pnfge D*D+∞
93 61 92 syl φD+∞
94 93 adantr φ¬D=+∞D+∞
95 47 necon3bi ¬D=+∞D+∞
96 95 adantl φ¬D=+∞D+∞
97 90 89 94 96 xrleneltd φ¬D=+∞D<+∞
98 88 89 90 91 97 elicod φ¬D=+∞D0+∞
99 98 adantr φ¬D=+∞¬E=+∞D0+∞
100 87 99 sselid φ¬D=+∞¬E=+∞D
101 12 a1i φ¬E=+∞0*
102 16 a1i φ¬E=+∞+∞*
103 9 adantr φ¬E=+∞E*
104 19 adantr φ¬E=+∞0E
105 pnfge E*E+∞
106 9 105 syl φE+∞
107 106 adantr φ¬E=+∞E+∞
108 72 necon3bi ¬E=+∞E+∞
109 108 adantl φ¬E=+∞E+∞
110 103 102 107 109 xrleneltd φ¬E=+∞E<+∞
111 101 102 103 104 110 elicod φ¬E=+∞E0+∞
112 87 111 sselid φ¬E=+∞E
113 112 adantlr φ¬D=+∞¬E=+∞E
114 100 113 jca φ¬D=+∞¬E=+∞DE
115 1 2 jca φAVBW
116 115 ad2antrr φ¬D=+∞¬E=+∞AVBW
117 7 ad2antrr φ¬D=+∞¬E=+∞AB
118 5 6 114 116 117 sumpr φ¬D=+∞¬E=+∞kABC=D+E
119 prfi ABFin
120 119 a1i φ¬D=+∞¬E=+∞ABFin
121 5 adantl φ¬D=+∞k=AC=D
122 98 adantr φ¬D=+∞k=AD0+∞
123 121 122 eqeltrd φ¬D=+∞k=AC0+∞
124 123 ad4ant14 φ¬D=+∞¬E=+∞kABk=AC0+∞
125 simp-4l φ¬D=+∞¬E=+∞kAB¬k=Aφ
126 simpllr φ¬D=+∞¬E=+∞kAB¬k=A¬E=+∞
127 37 adantll φ¬D=+∞¬E=+∞kAB¬k=Ak=B
128 39 3adant2 φ¬E=+∞k=BC=E
129 111 3adant3 φ¬E=+∞k=BE0+∞
130 128 129 eqeltrd φ¬E=+∞k=BC0+∞
131 125 126 127 130 syl3anc φ¬D=+∞¬E=+∞kAB¬k=AC0+∞
132 124 131 pm2.61dan φ¬D=+∞¬E=+∞kABC0+∞
133 120 132 sge0fsummpt φ¬D=+∞¬E=+∞sum^kABC=kABC
134 85 99 sselid φ¬D=+∞¬E=+∞D
135 85 111 sselid φ¬E=+∞E
136 135 adantlr φ¬D=+∞¬E=+∞E
137 rexadd DED+𝑒E=D+E
138 134 136 137 syl2anc φ¬D=+∞¬E=+∞D+𝑒E=D+E
139 118 133 138 3eqtr4d φ¬D=+∞¬E=+∞sum^kABC=D+𝑒E
140 84 139 pm2.61dan φ¬D=+∞sum^kABC=D+𝑒E
141 60 140 pm2.61dan φsum^kABC=D+𝑒E