Description: If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup , but here we can use sup with respect to RR instead of RR* . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0supre.x | |
|
sge0supre.f | |
||
sge0supre.re | |
||
Assertion | sge0supre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0supre.x | |
|
2 | sge0supre.f | |
|
3 | sge0supre.re | |
|
4 | 1 | adantr | |
5 | 2 | adantr | |
6 | simpr | |
|
7 | 4 5 6 | sge0pnfval | |
8 | 1 2 | sge0repnf | |
9 | 3 8 | mpbid | |
10 | 9 | adantr | |
11 | 7 10 | pm2.65da | |
12 | 2 11 | fge0iccico | |
13 | 1 12 | sge0reval | |
14 | 12 | sge0rnre | |
15 | sge0rnn0 | |
|
16 | 15 | a1i | |
17 | simpr | |
|
18 | eqid | |
|
19 | 18 | elrnmpt | |
20 | 19 | adantl | |
21 | 17 20 | mpbid | |
22 | simp3 | |
|
23 | ressxr | |
|
24 | 23 | a1i | |
25 | 14 24 | sstrd | |
26 | 25 | adantr | |
27 | id | |
|
28 | sumex | |
|
29 | 28 | a1i | |
30 | 18 | elrnmpt1 | |
31 | 27 29 30 | syl2anc | |
32 | 31 | adantl | |
33 | supxrub | |
|
34 | 26 32 33 | syl2anc | |
35 | 13 | eqcomd | |
36 | 35 | adantr | |
37 | 34 36 | breqtrd | |
38 | 37 | 3adant3 | |
39 | 22 38 | eqbrtrd | |
40 | 39 | 3exp | |
41 | 40 | rexlimdv | |
42 | 41 | adantr | |
43 | 21 42 | mpd | |
44 | 43 | ralrimiva | |
45 | brralrspcev | |
|
46 | 3 44 45 | syl2anc | |
47 | supxrre | |
|
48 | 14 16 46 47 | syl3anc | |
49 | 13 48 | eqtrd | |