| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0supre.x |  | 
						
							| 2 |  | sge0supre.f |  | 
						
							| 3 |  | sge0supre.re |  | 
						
							| 4 | 1 | adantr |  | 
						
							| 5 | 2 | adantr |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 4 5 6 | sge0pnfval |  | 
						
							| 8 | 1 2 | sge0repnf |  | 
						
							| 9 | 3 8 | mpbid |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 7 10 | pm2.65da |  | 
						
							| 12 | 2 11 | fge0iccico |  | 
						
							| 13 | 1 12 | sge0reval |  | 
						
							| 14 | 12 | sge0rnre |  | 
						
							| 15 |  | sge0rnn0 |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | elrnmpt |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 17 20 | mpbid |  | 
						
							| 22 |  | simp3 |  | 
						
							| 23 |  | ressxr |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 14 24 | sstrd |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | id |  | 
						
							| 28 |  | sumex |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 18 | elrnmpt1 |  | 
						
							| 31 | 27 29 30 | syl2anc |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | supxrub |  | 
						
							| 34 | 26 32 33 | syl2anc |  | 
						
							| 35 | 13 | eqcomd |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 34 36 | breqtrd |  | 
						
							| 38 | 37 | 3adant3 |  | 
						
							| 39 | 22 38 | eqbrtrd |  | 
						
							| 40 | 39 | 3exp |  | 
						
							| 41 | 40 | rexlimdv |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 21 42 | mpd |  | 
						
							| 44 | 43 | ralrimiva |  | 
						
							| 45 |  | brralrspcev |  | 
						
							| 46 | 3 44 45 | syl2anc |  | 
						
							| 47 |  | supxrre |  | 
						
							| 48 | 14 16 46 47 | syl3anc |  | 
						
							| 49 | 13 48 | eqtrd |  |