Metamath Proof Explorer


Theorem sge0supre

Description: If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup , but here we can use sup with respect to RR instead of RR* . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0supre.x φXV
sge0supre.f φF:X0+∞
sge0supre.re φsum^F
Assertion sge0supre φsum^F=supranx𝒫XFinyxFy<

Proof

Step Hyp Ref Expression
1 sge0supre.x φXV
2 sge0supre.f φF:X0+∞
3 sge0supre.re φsum^F
4 1 adantr φ+∞ranFXV
5 2 adantr φ+∞ranFF:X0+∞
6 simpr φ+∞ranF+∞ranF
7 4 5 6 sge0pnfval φ+∞ranFsum^F=+∞
8 1 2 sge0repnf φsum^F¬sum^F=+∞
9 3 8 mpbid φ¬sum^F=+∞
10 9 adantr φ+∞ranF¬sum^F=+∞
11 7 10 pm2.65da φ¬+∞ranF
12 2 11 fge0iccico φF:X0+∞
13 1 12 sge0reval φsum^F=supranx𝒫XFinyxFy*<
14 12 sge0rnre φranx𝒫XFinyxFy
15 sge0rnn0 ranx𝒫XFinyxFy
16 15 a1i φranx𝒫XFinyxFy
17 simpr φwranx𝒫XFinyxFywranx𝒫XFinyxFy
18 eqid x𝒫XFinyxFy=x𝒫XFinyxFy
19 18 elrnmpt wranx𝒫XFinyxFywranx𝒫XFinyxFyx𝒫XFinw=yxFy
20 19 adantl φwranx𝒫XFinyxFywranx𝒫XFinyxFyx𝒫XFinw=yxFy
21 17 20 mpbid φwranx𝒫XFinyxFyx𝒫XFinw=yxFy
22 simp3 φx𝒫XFinw=yxFyw=yxFy
23 ressxr *
24 23 a1i φ*
25 14 24 sstrd φranx𝒫XFinyxFy*
26 25 adantr φx𝒫XFinranx𝒫XFinyxFy*
27 id x𝒫XFinx𝒫XFin
28 sumex yxFyV
29 28 a1i x𝒫XFinyxFyV
30 18 elrnmpt1 x𝒫XFinyxFyVyxFyranx𝒫XFinyxFy
31 27 29 30 syl2anc x𝒫XFinyxFyranx𝒫XFinyxFy
32 31 adantl φx𝒫XFinyxFyranx𝒫XFinyxFy
33 supxrub ranx𝒫XFinyxFy*yxFyranx𝒫XFinyxFyyxFysupranx𝒫XFinyxFy*<
34 26 32 33 syl2anc φx𝒫XFinyxFysupranx𝒫XFinyxFy*<
35 13 eqcomd φsupranx𝒫XFinyxFy*<=sum^F
36 35 adantr φx𝒫XFinsupranx𝒫XFinyxFy*<=sum^F
37 34 36 breqtrd φx𝒫XFinyxFysum^F
38 37 3adant3 φx𝒫XFinw=yxFyyxFysum^F
39 22 38 eqbrtrd φx𝒫XFinw=yxFywsum^F
40 39 3exp φx𝒫XFinw=yxFywsum^F
41 40 rexlimdv φx𝒫XFinw=yxFywsum^F
42 41 adantr φwranx𝒫XFinyxFyx𝒫XFinw=yxFywsum^F
43 21 42 mpd φwranx𝒫XFinyxFywsum^F
44 43 ralrimiva φwranx𝒫XFinyxFywsum^F
45 brralrspcev sum^Fwranx𝒫XFinyxFywsum^Fzwranx𝒫XFinyxFywz
46 3 44 45 syl2anc φzwranx𝒫XFinyxFywz
47 supxrre ranx𝒫XFinyxFyranx𝒫XFinyxFyzwranx𝒫XFinyxFywzsupranx𝒫XFinyxFy*<=supranx𝒫XFinyxFy<
48 14 16 46 47 syl3anc φsupranx𝒫XFinyxFy*<=supranx𝒫XFinyxFy<
49 13 48 eqtrd φsum^F=supranx𝒫XFinyxFy<