Metamath Proof Explorer


Theorem smfaddlem2

Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfaddlem2.x x φ
smfaddlem2.s φ S SAlg
smfaddlem2.a φ A V
smfaddlem2.b φ x A B
smfaddlem2.d φ x C D
smfaddlem2.m φ x A B SMblFn S
smfaddlem2.7 φ x C D SMblFn S
smfaddlem2.r φ R
smfaddlem2.k K = p q | p + q < R
Assertion smfaddlem2 φ x A C | B + D < R S 𝑡 A C

Proof

Step Hyp Ref Expression
1 smfaddlem2.x x φ
2 smfaddlem2.s φ S SAlg
3 smfaddlem2.a φ A V
4 smfaddlem2.b φ x A B
5 smfaddlem2.d φ x C D
6 smfaddlem2.m φ x A B SMblFn S
7 smfaddlem2.7 φ x C D SMblFn S
8 smfaddlem2.r φ R
9 smfaddlem2.k K = p q | p + q < R
10 1 4 5 8 9 smfaddlem1 φ x A C | B + D < R = p q K p x A C | B < p D < q
11 elinel1 x A C x A
12 11 adantl φ x A C x A
13 1 12 ssdf φ A C A
14 3 13 ssexd φ A C V
15 eqid S 𝑡 A C = S 𝑡 A C
16 2 14 15 subsalsal φ S 𝑡 A C SAlg
17 qct ω
18 17 a1i φ ω
19 16 adantr φ p S 𝑡 A C SAlg
20 qex V
21 20 a1i φ p V
22 9 a1i φ K = p q | p + q < R
23 20 rabex q | p + q < R V
24 23 a1i φ p q | p + q < R V
25 22 24 fvmpt2d φ p K p = q | p + q < R
26 ssrab2 q | p + q < R
27 25 26 eqsstrdi φ p K p
28 ssdomg V K p K p
29 21 27 28 sylc φ p K p
30 17 a1i φ p ω
31 domtr K p ω K p ω
32 29 30 31 syl2anc φ p K p ω
33 inrab x A C | B < p x A C | D < q = x A C | B < p D < q
34 16 ad2antrr φ p q K p S 𝑡 A C SAlg
35 nfv x p
36 1 35 nfan x φ p
37 nfv x q K p
38 36 37 nfan x φ p q K p
39 2 ad2antrr φ p q K p S SAlg
40 12 4 syldan φ x A C B
41 40 ad4ant14 φ p q K p x A C B
42 2 6 13 sssmfmpt φ x A C B SMblFn S
43 42 ad2antrr φ p q K p x A C B SMblFn S
44 qre p p
45 44 ad2antlr φ p q K p p
46 38 39 41 43 45 smfpimltmpt φ p q K p x A C | B < p S 𝑡 A C
47 elinel2 x A C x C
48 47 adantl φ x A C x C
49 48 5 syldan φ x A C D
50 49 ad4ant14 φ p q K p x A C D
51 1 48 ssdf φ A C C
52 2 7 51 sssmfmpt φ x A C D SMblFn S
53 52 ad2antrr φ p q K p x A C D SMblFn S
54 44 ssriv
55 27 sselda φ p q K p q
56 54 55 sseldi φ p q K p q
57 38 39 50 53 56 smfpimltmpt φ p q K p x A C | D < q S 𝑡 A C
58 34 46 57 salincld φ p q K p x A C | B < p x A C | D < q S 𝑡 A C
59 33 58 eqeltrrid φ p q K p x A C | B < p D < q S 𝑡 A C
60 19 32 59 saliuncl φ p q K p x A C | B < p D < q S 𝑡 A C
61 16 18 60 saliuncl φ p q K p x A C | B < p D < q S 𝑡 A C
62 10 61 eqeltrd φ x A C | B + D < R S 𝑡 A C