Metamath Proof Explorer


Theorem smfaddlem2

Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfaddlem2.x xφ
smfaddlem2.s φSSAlg
smfaddlem2.a φAV
smfaddlem2.b φxAB
smfaddlem2.d φxCD
smfaddlem2.m φxABSMblFnS
smfaddlem2.7 φxCDSMblFnS
smfaddlem2.r φR
smfaddlem2.k K=pq|p+q<R
Assertion smfaddlem2 φxAC|B+D<RS𝑡AC

Proof

Step Hyp Ref Expression
1 smfaddlem2.x xφ
2 smfaddlem2.s φSSAlg
3 smfaddlem2.a φAV
4 smfaddlem2.b φxAB
5 smfaddlem2.d φxCD
6 smfaddlem2.m φxABSMblFnS
7 smfaddlem2.7 φxCDSMblFnS
8 smfaddlem2.r φR
9 smfaddlem2.k K=pq|p+q<R
10 1 4 5 8 9 smfaddlem1 φxAC|B+D<R=pqKpxAC|B<pD<q
11 elinel1 xACxA
12 11 adantl φxACxA
13 1 12 ssdf φACA
14 3 13 ssexd φACV
15 eqid S𝑡AC=S𝑡AC
16 2 14 15 subsalsal φS𝑡ACSAlg
17 qct ω
18 17 a1i φω
19 16 adantr φpS𝑡ACSAlg
20 qex V
21 20 a1i φpV
22 9 a1i φK=pq|p+q<R
23 20 rabex q|p+q<RV
24 23 a1i φpq|p+q<RV
25 22 24 fvmpt2d φpKp=q|p+q<R
26 ssrab2 q|p+q<R
27 25 26 eqsstrdi φpKp
28 ssdomg VKpKp
29 21 27 28 sylc φpKp
30 17 a1i φpω
31 domtr KpωKpω
32 29 30 31 syl2anc φpKpω
33 inrab xAC|B<pxAC|D<q=xAC|B<pD<q
34 16 ad2antrr φpqKpS𝑡ACSAlg
35 nfv xp
36 1 35 nfan xφp
37 nfv xqKp
38 36 37 nfan xφpqKp
39 2 ad2antrr φpqKpSSAlg
40 12 4 syldan φxACB
41 40 ad4ant14 φpqKpxACB
42 2 6 13 sssmfmpt φxACBSMblFnS
43 42 ad2antrr φpqKpxACBSMblFnS
44 qre pp
45 44 ad2antlr φpqKpp
46 38 39 41 43 45 smfpimltmpt φpqKpxAC|B<pS𝑡AC
47 elinel2 xACxC
48 47 adantl φxACxC
49 48 5 syldan φxACD
50 49 ad4ant14 φpqKpxACD
51 1 48 ssdf φACC
52 2 7 51 sssmfmpt φxACDSMblFnS
53 52 ad2antrr φpqKpxACDSMblFnS
54 44 ssriv
55 27 sselda φpqKpq
56 54 55 sselid φpqKpq
57 38 39 50 53 56 smfpimltmpt φpqKpxAC|D<qS𝑡AC
58 34 46 57 salincld φpqKpxAC|B<pxAC|D<qS𝑡AC
59 33 58 eqeltrrid φpqKpxAC|B<pD<qS𝑡AC
60 19 32 59 saliuncl φpqKpxAC|B<pD<qS𝑡AC
61 16 18 60 saliuncl φpqKpxAC|B<pD<qS𝑡AC
62 10 61 eqeltrd φxAC|B+D<RS𝑡AC