Metamath Proof Explorer


Theorem sn-0tie0

Description: Lemma for sn-mul02 . Commuted version of sn-it0e0 . (Contributed by SN, 30-Jun-2024)

Ref Expression
Assertion sn-0tie0 0i=0

Proof

Step Hyp Ref Expression
1 0cn 0
2 ax-icn i
3 1 2 mulcli 0i
4 cnre 0iab0i=a+ib
5 simplr ab0i=a+ib¬0i=00i=a+ib
6 neqne ¬0i=00i0
7 6 adantl ab0i=a+ib¬0i=00i0
8 simplll ab0i=a+ib¬0i=0a
9 rernegcl a0-a
10 8 9 syl ab0i=a+ib¬0i=00-a
11 1red ab0i=a+ib¬0i=01
12 10 11 readdcld ab0i=a+ib¬0i=00-a+1
13 ax-rrecex 0-a+10-a+10x0-a+1x=1
14 12 13 sylan ab0i=a+ib¬0i=00-a+10x0-a+1x=1
15 2 a1i ab0i=a+ib¬0i=0i
16 10 recnd ab0i=a+ib¬0i=00-a
17 1cnd ab0i=a+ib¬0i=01
18 15 16 17 adddid ab0i=a+ib¬0i=0i0-a+1=i0-a+i1
19 it1ei i1=i
20 19 oveq2i i0-a+i1=i0-a+i
21 18 20 eqtrdi ab0i=a+ib¬0i=0i0-a+1=i0-a+i
22 21 oveq2d ab0i=a+ib¬0i=00i0-a+1=0i0-a+i
23 0cnd ab0i=a+ib¬0i=00
24 15 16 mulcld ab0i=a+ib¬0i=0i0-a
25 23 24 15 adddid ab0i=a+ib¬0i=00i0-a+i=0i0-a+0i
26 22 25 eqtrd ab0i=a+ib¬0i=00i0-a+1=0i0-a+0i
27 5 oveq2d ab0i=a+ib¬0i=00-a+0i=0-a+a+ib
28 renegid2 a0-a+a=0
29 28 ad3antrrr ab0i=a+ib¬0i=00-a+a=0
30 29 oveq1d ab0i=a+ib¬0i=00-a+a+ib=0+ib
31 8 recnd ab0i=a+ib¬0i=0a
32 simpllr ab0i=a+ib¬0i=0b
33 32 recnd ab0i=a+ib¬0i=0b
34 15 33 mulcld ab0i=a+ib¬0i=0ib
35 16 31 34 addassd ab0i=a+ib¬0i=00-a+a+ib=0-a+a+ib
36 sn-addlid ib0+ib=ib
37 34 36 syl ab0i=a+ib¬0i=00+ib=ib
38 30 35 37 3eqtr3d ab0i=a+ib¬0i=00-a+a+ib=ib
39 27 38 eqtrd ab0i=a+ib¬0i=00-a+0i=ib
40 39 oveq2d ab0i=a+ib¬0i=00i0-a+0i=0iib
41 3 a1i ab0i=a+ib¬0i=00i
42 41 16 41 adddid ab0i=a+ib¬0i=00i0-a+0i=0i0-a+0i0i
43 23 15 16 mulassd ab0i=a+ib¬0i=00i0-a=0i0-a
44 41 23 15 mulassd ab0i=a+ib¬0i=00i0i=0i0i
45 sn-mul01 0i0i0=0
46 41 45 syl ab0i=a+ib¬0i=00i0=0
47 46 oveq1d ab0i=a+ib¬0i=00i0i=0i
48 44 47 eqtr3d ab0i=a+ib¬0i=00i0i=0i
49 43 48 oveq12d ab0i=a+ib¬0i=00i0-a+0i0i=0i0-a+0i
50 42 49 eqtrd ab0i=a+ib¬0i=00i0-a+0i=0i0-a+0i
51 23 15 34 mulassd ab0i=a+ib¬0i=00iib=0iib
52 15 15 33 mulassd ab0i=a+ib¬0i=0iib=iib
53 reixi ii=0-1
54 1re 1
55 rernegcl 10-1
56 54 55 ax-mp 0-1
57 53 56 eqeltri ii
58 57 a1i ab0i=a+ib¬0i=0ii
59 58 32 remulcld ab0i=a+ib¬0i=0iib
60 52 59 eqeltrrd ab0i=a+ib¬0i=0iib
61 remul02 iib0iib=0
62 60 61 syl ab0i=a+ib¬0i=00iib=0
63 51 62 eqtrd ab0i=a+ib¬0i=00iib=0
64 40 50 63 3eqtr3d ab0i=a+ib¬0i=00i0-a+0i=0
65 26 64 eqtrd ab0i=a+ib¬0i=00i0-a+1=0
66 65 ad2antrr ab0i=a+ib¬0i=00-a+10x0-a+1x=10i0-a+1=0
67 66 oveq1d ab0i=a+ib¬0i=00-a+10x0-a+1x=10i0-a+1x=0x
68 0cnd ab0i=a+ib¬0i=00-a+10x0-a+1x=10
69 2 a1i ab0i=a+ib¬0i=00-a+10x0-a+1x=1i
70 10 ad2antrr ab0i=a+ib¬0i=00-a+10x0-a+1x=10-a
71 70 recnd ab0i=a+ib¬0i=00-a+10x0-a+1x=10-a
72 1cnd ab0i=a+ib¬0i=00-a+10x0-a+1x=11
73 71 72 addcld ab0i=a+ib¬0i=00-a+10x0-a+1x=10-a+1
74 69 73 mulcld ab0i=a+ib¬0i=00-a+10x0-a+1x=1i0-a+1
75 simprl ab0i=a+ib¬0i=00-a+10x0-a+1x=1x
76 75 recnd ab0i=a+ib¬0i=00-a+10x0-a+1x=1x
77 68 74 76 mulassd ab0i=a+ib¬0i=00-a+10x0-a+1x=10i0-a+1x=0i0-a+1x
78 69 73 76 mulassd ab0i=a+ib¬0i=00-a+10x0-a+1x=1i0-a+1x=i0-a+1x
79 simprr ab0i=a+ib¬0i=00-a+10x0-a+1x=10-a+1x=1
80 79 oveq2d ab0i=a+ib¬0i=00-a+10x0-a+1x=1i0-a+1x=i1
81 80 19 eqtrdi ab0i=a+ib¬0i=00-a+10x0-a+1x=1i0-a+1x=i
82 78 81 eqtrd ab0i=a+ib¬0i=00-a+10x0-a+1x=1i0-a+1x=i
83 82 oveq2d ab0i=a+ib¬0i=00-a+10x0-a+1x=10i0-a+1x=0i
84 77 83 eqtrd ab0i=a+ib¬0i=00-a+10x0-a+1x=10i0-a+1x=0i
85 remul02 x0x=0
86 75 85 syl ab0i=a+ib¬0i=00-a+10x0-a+1x=10x=0
87 67 84 86 3eqtr3d ab0i=a+ib¬0i=00-a+10x0-a+1x=10i=0
88 14 87 rexlimddv ab0i=a+ib¬0i=00-a+100i=0
89 88 ex ab0i=a+ib¬0i=00-a+100i=0
90 89 necon1d ab0i=a+ib¬0i=00i00-a+1=0
91 7 90 mpd ab0i=a+ib¬0i=00-a+1=0
92 91 oveq2d ab0i=a+ib¬0i=0a+0-a+1=a+0
93 31 16 17 addassd ab0i=a+ib¬0i=0a+0-a+1=a+0-a+1
94 renegid aa+0-a=0
95 8 94 syl ab0i=a+ib¬0i=0a+0-a=0
96 95 oveq1d ab0i=a+ib¬0i=0a+0-a+1=0+1
97 readdlid 10+1=1
98 54 97 ax-mp 0+1=1
99 96 98 eqtrdi ab0i=a+ib¬0i=0a+0-a+1=1
100 93 99 eqtr3d ab0i=a+ib¬0i=0a+0-a+1=1
101 readdrid aa+0=a
102 8 101 syl ab0i=a+ib¬0i=0a+0=a
103 92 100 102 3eqtr3rd ab0i=a+ib¬0i=0a=1
104 rernegcl b0-b
105 32 104 syl ab0i=a+ib¬0i=00-b
106 11 105 readdcld ab0i=a+ib¬0i=01+0-b
107 ax-rrecex 1+0-b1+0-b0y1+0-by=1
108 106 107 sylan ab0i=a+ib¬0i=01+0-b0y1+0-by=1
109 105 recnd ab0i=a+ib¬0i=00-b
110 15 109 mulcld ab0i=a+ib¬0i=0i0-b
111 23 15 110 adddid ab0i=a+ib¬0i=00i+i0-b=0i+0i0-b
112 0re 0
113 remul02 000=0
114 112 113 ax-mp 00=0
115 114 oveq1i 00i=0i
116 1 1 2 mulassi 00i=00i
117 115 116 eqtr3i 0i=00i
118 117 a1i ab0i=a+ib¬0i=00i=00i
119 118 oveq1d ab0i=a+ib¬0i=00i+0i0-b=00i+0i0-b
120 111 119 eqtrd ab0i=a+ib¬0i=00i+i0-b=00i+0i0-b
121 15 17 109 adddid ab0i=a+ib¬0i=0i1+0-b=i1+i0-b
122 19 a1i ab0i=a+ib¬0i=0i1=i
123 122 oveq1d ab0i=a+ib¬0i=0i1+i0-b=i+i0-b
124 121 123 eqtrd ab0i=a+ib¬0i=0i1+0-b=i+i0-b
125 124 oveq2d ab0i=a+ib¬0i=00i1+0-b=0i+i0-b
126 23 41 110 adddid ab0i=a+ib¬0i=000i+i0-b=00i+0i0-b
127 120 125 126 3eqtr4d ab0i=a+ib¬0i=00i1+0-b=00i+i0-b
128 103 oveq1d ab0i=a+ib¬0i=0a+ib=1+ib
129 5 128 eqtrd ab0i=a+ib¬0i=00i=1+ib
130 129 oveq1d ab0i=a+ib¬0i=00i+i0-b=1+ib+i0-b
131 17 34 110 addassd ab0i=a+ib¬0i=01+ib+i0-b=1+ib+i0-b
132 renegid bb+0-b=0
133 32 132 syl ab0i=a+ib¬0i=0b+0-b=0
134 133 oveq2d ab0i=a+ib¬0i=0ib+0-b=i0
135 15 33 109 adddid ab0i=a+ib¬0i=0ib+0-b=ib+i0-b
136 sn-mul01 ii0=0
137 2 136 mp1i ab0i=a+ib¬0i=0i0=0
138 134 135 137 3eqtr3d ab0i=a+ib¬0i=0ib+i0-b=0
139 138 oveq2d ab0i=a+ib¬0i=01+ib+i0-b=1+0
140 readdrid 11+0=1
141 54 140 ax-mp 1+0=1
142 139 141 eqtrdi ab0i=a+ib¬0i=01+ib+i0-b=1
143 131 142 eqtrd ab0i=a+ib¬0i=01+ib+i0-b=1
144 130 143 eqtrd ab0i=a+ib¬0i=00i+i0-b=1
145 144 oveq2d ab0i=a+ib¬0i=000i+i0-b=01
146 127 145 eqtrd ab0i=a+ib¬0i=00i1+0-b=01
147 ax-1rid 001=0
148 112 147 ax-mp 01=0
149 146 148 eqtrdi ab0i=a+ib¬0i=00i1+0-b=0
150 149 ad2antrr ab0i=a+ib¬0i=01+0-b0y1+0-by=10i1+0-b=0
151 150 oveq1d ab0i=a+ib¬0i=01+0-b0y1+0-by=10i1+0-by=0y
152 0cnd ab0i=a+ib¬0i=01+0-b0y1+0-by=10
153 2 a1i ab0i=a+ib¬0i=01+0-b0y1+0-by=1i
154 1cnd ab0i=a+ib¬0i=01+0-b0y1+0-by=11
155 109 ad2antrr ab0i=a+ib¬0i=01+0-b0y1+0-by=10-b
156 154 155 addcld ab0i=a+ib¬0i=01+0-b0y1+0-by=11+0-b
157 153 156 mulcld ab0i=a+ib¬0i=01+0-b0y1+0-by=1i1+0-b
158 simprl ab0i=a+ib¬0i=01+0-b0y1+0-by=1y
159 158 recnd ab0i=a+ib¬0i=01+0-b0y1+0-by=1y
160 152 157 159 mulassd ab0i=a+ib¬0i=01+0-b0y1+0-by=10i1+0-by=0i1+0-by
161 153 156 159 mulassd ab0i=a+ib¬0i=01+0-b0y1+0-by=1i1+0-by=i1+0-by
162 simprr ab0i=a+ib¬0i=01+0-b0y1+0-by=11+0-by=1
163 162 oveq2d ab0i=a+ib¬0i=01+0-b0y1+0-by=1i1+0-by=i1
164 163 19 eqtrdi ab0i=a+ib¬0i=01+0-b0y1+0-by=1i1+0-by=i
165 161 164 eqtrd ab0i=a+ib¬0i=01+0-b0y1+0-by=1i1+0-by=i
166 165 oveq2d ab0i=a+ib¬0i=01+0-b0y1+0-by=10i1+0-by=0i
167 160 166 eqtrd ab0i=a+ib¬0i=01+0-b0y1+0-by=10i1+0-by=0i
168 remul02 y0y=0
169 158 168 syl ab0i=a+ib¬0i=01+0-b0y1+0-by=10y=0
170 151 167 169 3eqtr3d ab0i=a+ib¬0i=01+0-b0y1+0-by=10i=0
171 108 170 rexlimddv ab0i=a+ib¬0i=01+0-b00i=0
172 171 ex ab0i=a+ib¬0i=01+0-b00i=0
173 172 necon1d ab0i=a+ib¬0i=00i01+0-b=0
174 7 173 mpd ab0i=a+ib¬0i=01+0-b=0
175 174 oveq1d ab0i=a+ib¬0i=01+0-b+b=0+b
176 17 109 33 addassd ab0i=a+ib¬0i=01+0-b+b=1+0-b+b
177 renegid2 b0-b+b=0
178 32 177 syl ab0i=a+ib¬0i=00-b+b=0
179 178 oveq2d ab0i=a+ib¬0i=01+0-b+b=1+0
180 179 141 eqtrdi ab0i=a+ib¬0i=01+0-b+b=1
181 176 180 eqtrd ab0i=a+ib¬0i=01+0-b+b=1
182 readdlid b0+b=b
183 32 182 syl ab0i=a+ib¬0i=00+b=b
184 175 181 183 3eqtr3rd ab0i=a+ib¬0i=0b=1
185 184 oveq2d ab0i=a+ib¬0i=0ib=i1
186 103 185 oveq12d ab0i=a+ib¬0i=0a+ib=1+i1
187 5 186 eqtrd ab0i=a+ib¬0i=00i=1+i1
188 19 oveq2i 1+i1=1+i
189 188 eqeq2i 0i=1+i10i=1+i
190 oveq2 0i=1+iiii0i=iii1+i
191 2 2 mulcli ii
192 191 2 mulcli iii
193 192 1 2 mulassi iii0i=iii0i
194 sn-mul01 iiiiii0=0
195 192 194 ax-mp iii0=0
196 195 oveq1i iii0i=0i
197 193 196 eqtr3i iii0i=0i
198 ax-1cn 1
199 192 198 2 adddii iii1+i=iii1+iiii
200 191 2 198 mulassi iii1=iii1
201 19 oveq2i iii1=iii
202 200 201 eqtri iii1=iii
203 191 2 2 mulassi iiii=iiii
204 rei4 iiii=1
205 203 204 eqtri iiii=1
206 202 205 oveq12i iii1+iiii=iii+1
207 199 206 eqtri iii1+i=iii+1
208 190 197 207 3eqtr3g 0i=1+i0i=iii+1
209 54 54 readdcli 1+1
210 df-2 2=1+1
211 sn-0ne2 02
212 211 necomi 20
213 210 212 eqnetrri 1+10
214 ax-rrecex 1+11+10z1+1z=1
215 209 213 214 mp2an z1+1z=1
216 192 198 addcli iii+1
217 198 2 216 addassi 1+i+iii+1=1+i+iii+1
218 2 192 198 addassi i+iii+1=i+iii+1
219 218 oveq2i 1+i+iii+1=1+i+iii+1
220 2 2 2 mulassi iii=iii
221 220 oveq2i i+iii=i+iii
222 ipiiie0 i+iii=0
223 221 222 eqtri i+iii=0
224 223 oveq1i i+iii+1=0+1
225 224 98 eqtri i+iii+1=1
226 225 oveq2i 1+i+iii+1=1+1
227 217 219 226 3eqtr2i 1+i+iii+1=1+1
228 227 a1i 0i=1+i0i=iii+11+i+iii+1=1+1
229 3 198 198 adddii 0i1+1=0i1+0i1
230 1 2 198 mulassi 0i1=0i1
231 19 oveq2i 0i1=0i
232 230 231 eqtri 0i1=0i
233 simpl 0i=1+i0i=iii+10i=1+i
234 232 233 eqtrid 0i=1+i0i=iii+10i1=1+i
235 simpr 0i=1+i0i=iii+10i=iii+1
236 232 235 eqtrid 0i=1+i0i=iii+10i1=iii+1
237 234 236 oveq12d 0i=1+i0i=iii+10i1+0i1=1+i+iii+1
238 229 237 eqtrid 0i=1+i0i=iii+10i1+1=1+i+iii+1
239 remullid 1+111+1=1+1
240 209 239 mp1i 0i=1+i0i=iii+111+1=1+1
241 228 238 240 3eqtr4d 0i=1+i0i=iii+10i1+1=11+1
242 241 oveq1d 0i=1+i0i=iii+10i1+1z=11+1z
243 242 adantr 0i=1+i0i=iii+1z1+1z=10i1+1z=11+1z
244 3 a1i 0i=1+i0i=iii+1z1+1z=10i
245 1cnd 0i=1+i0i=iii+1z1+1z=11
246 245 245 addcld 0i=1+i0i=iii+1z1+1z=11+1
247 simprl 0i=1+i0i=iii+1z1+1z=1z
248 247 recnd 0i=1+i0i=iii+1z1+1z=1z
249 244 246 248 mulassd 0i=1+i0i=iii+1z1+1z=10i1+1z=0i1+1z
250 simprr 0i=1+i0i=iii+1z1+1z=11+1z=1
251 250 oveq2d 0i=1+i0i=iii+1z1+1z=10i1+1z=0i1
252 251 232 eqtrdi 0i=1+i0i=iii+1z1+1z=10i1+1z=0i
253 249 252 eqtrd 0i=1+i0i=iii+1z1+1z=10i1+1z=0i
254 245 246 248 mulassd 0i=1+i0i=iii+1z1+1z=111+1z=11+1z
255 250 oveq2d 0i=1+i0i=iii+1z1+1z=111+1z=11
256 1t1e1ALT 11=1
257 255 256 eqtrdi 0i=1+i0i=iii+1z1+1z=111+1z=1
258 254 257 eqtrd 0i=1+i0i=iii+1z1+1z=111+1z=1
259 243 253 258 3eqtr3d 0i=1+i0i=iii+1z1+1z=10i=1
260 259 rexlimdvaa 0i=1+i0i=iii+1z1+1z=10i=1
261 215 260 mpi 0i=1+i0i=iii+10i=1
262 208 261 mpdan 0i=1+i0i=1
263 189 262 sylbi 0i=1+i10i=1
264 oveq2 0i=100i=01
265 116 115 eqtr3i 00i=0i
266 264 265 148 3eqtr3g 0i=10i=0
267 263 266 syl 0i=1+i10i=0
268 187 267 syl ab0i=a+ib¬0i=00i=0
269 268 pm2.18da ab0i=a+ib0i=0
270 269 ex ab0i=a+ib0i=0
271 270 rexlimivv ab0i=a+ib0i=0
272 3 4 271 mp2b 0i=0