Metamath Proof Explorer


Theorem srgbinomlem3

Description: Lemma 3 for srgbinomlem . (Contributed by AV, 23-Aug-2019) (Proof shortened by AV, 27-Oct-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
srgbinomlem.r φRSRing
srgbinomlem.a φAS
srgbinomlem.b φBS
srgbinomlem.c φA×˙B=B×˙A
srgbinomlem.n φN0
srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
Assertion srgbinomlem3 φψN×˙A+˙B×˙A=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 srgbinomlem.r φRSRing
8 srgbinomlem.a φAS
9 srgbinomlem.b φBS
10 srgbinomlem.c φA×˙B=B×˙A
11 srgbinomlem.n φN0
12 srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
13 12 adantl φψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
14 13 oveq1d φψN×˙A+˙B×˙A=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A
15 srgcmn RSRingRCMnd
16 7 15 syl φRCMnd
17 simpl φk0N+1φ
18 elfzelz k0N+1k
19 bccl N0k(Nk)0
20 11 18 19 syl2an φk0N+1(Nk)0
21 fznn0sub k0N+1N+1-k0
22 21 adantl φk0N+1N+1-k0
23 elfznn0 k0N+1k0
24 23 adantl φk0N+1k0
25 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(Nk)0N+1-k0k0(Nk)·˙N+1-k×˙A×˙k×˙BS
26 17 20 22 24 25 syl13anc φk0N+1(Nk)·˙N+1-k×˙A×˙k×˙BS
27 1 4 16 11 26 gsummptfzsplit φRk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B+˙RkN+1(Nk)·˙N+1-k×˙A×˙k×˙B
28 srgmnd RSRingRMnd
29 7 28 syl φRMnd
30 ovexd φN+1V
31 id φφ
32 11 nn0zd φN
33 32 peano2zd φN+1
34 bccl N0N+1(NN+1)0
35 11 33 34 syl2anc φ(NN+1)0
36 11 nn0cnd φN
37 peano2cn NN+1
38 36 37 syl φN+1
39 38 subidd φN+1-N+1=0
40 0nn0 00
41 39 40 eqeltrdi φN+1-N+10
42 peano2nn0 N0N+10
43 11 42 syl φN+10
44 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(NN+1)0N+1-N+10N+10(NN+1)·˙N+1-N+1×˙A×˙N+1×˙BS
45 31 35 41 43 44 syl13anc φ(NN+1)·˙N+1-N+1×˙A×˙N+1×˙BS
46 oveq2 k=N+1(Nk)=(NN+1)
47 oveq2 k=N+1N+1-k=N+1-N+1
48 47 oveq1d k=N+1N+1-k×˙A=N+1-N+1×˙A
49 oveq1 k=N+1k×˙B=N+1×˙B
50 48 49 oveq12d k=N+1N+1-k×˙A×˙k×˙B=N+1-N+1×˙A×˙N+1×˙B
51 46 50 oveq12d k=N+1(Nk)·˙N+1-k×˙A×˙k×˙B=(NN+1)·˙N+1-N+1×˙A×˙N+1×˙B
52 1 51 gsumsn RMndN+1V(NN+1)·˙N+1-N+1×˙A×˙N+1×˙BSRkN+1(Nk)·˙N+1-k×˙A×˙k×˙B=(NN+1)·˙N+1-N+1×˙A×˙N+1×˙B
53 29 30 45 52 syl3anc φRkN+1(Nk)·˙N+1-k×˙A×˙k×˙B=(NN+1)·˙N+1-N+1×˙A×˙N+1×˙B
54 11 nn0red φN
55 54 ltp1d φN<N+1
56 55 olcd φN+1<0N<N+1
57 bcval4 N0N+1N+1<0N<N+1(NN+1)=0
58 11 33 56 57 syl3anc φ(NN+1)=0
59 58 oveq1d φ(NN+1)·˙N+1-N+1×˙A×˙N+1×˙B=0·˙N+1-N+1×˙A×˙N+1×˙B
60 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem1 φN+1-N+10N+10N+1-N+1×˙A×˙N+1×˙BS
61 31 41 43 60 syl12anc φN+1-N+1×˙A×˙N+1×˙BS
62 eqid 0R=0R
63 1 62 3 mulg0 N+1-N+1×˙A×˙N+1×˙BS0·˙N+1-N+1×˙A×˙N+1×˙B=0R
64 61 63 syl φ0·˙N+1-N+1×˙A×˙N+1×˙B=0R
65 53 59 64 3eqtrd φRkN+1(Nk)·˙N+1-k×˙A×˙k×˙B=0R
66 65 oveq2d φRk=0N(Nk)·˙N+1-k×˙A×˙k×˙B+˙RkN+1(Nk)·˙N+1-k×˙A×˙k×˙B=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B+˙0R
67 fzfid φ0NFin
68 simpl φk0Nφ
69 bccl2 k0N(Nk)
70 69 nnnn0d k0N(Nk)0
71 70 adantl φk0N(Nk)0
72 fzelp1 k0Nk0N+1
73 72 22 sylan2 φk0NN+1-k0
74 elfznn0 k0Nk0
75 74 adantl φk0Nk0
76 68 71 73 75 25 syl13anc φk0N(Nk)·˙N+1-k×˙A×˙k×˙BS
77 76 ralrimiva φk0N(Nk)·˙N+1-k×˙A×˙k×˙BS
78 1 16 67 77 gsummptcl φRk=0N(Nk)·˙N+1-k×˙A×˙k×˙BS
79 1 4 62 mndrid RMndRk=0N(Nk)·˙N+1-k×˙A×˙k×˙BSRk=0N(Nk)·˙N+1-k×˙A×˙k×˙B+˙0R=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B
80 29 78 79 syl2anc φRk=0N(Nk)·˙N+1-k×˙A×˙k×˙B+˙0R=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B
81 27 66 80 3eqtrd φRk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B
82 7 adantr φk0NRSRing
83 8 adantr φk0NAS
84 9 adantr φk0NBS
85 10 adantr φk0NA×˙B=B×˙A
86 fznn0sub k0NNk0
87 86 adantl φk0NNk0
88 1 2 5 6 82 83 84 75 85 87 3 71 srgpcomppsc φk0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=(Nk)·˙N-k+1×˙A×˙k×˙B
89 36 adantr φk0NN
90 1cnd φk0N1
91 elfzelz k0Nk
92 91 zcnd k0Nk
93 92 adantl φk0Nk
94 89 90 93 addsubd φk0NN+1-k=N-k+1
95 94 oveq1d φk0NN+1-k×˙A=N-k+1×˙A
96 95 oveq1d φk0NN+1-k×˙A×˙k×˙B=N-k+1×˙A×˙k×˙B
97 96 oveq2d φk0N(Nk)·˙N+1-k×˙A×˙k×˙B=(Nk)·˙N-k+1×˙A×˙k×˙B
98 88 97 eqtr4d φk0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=(Nk)·˙N+1-k×˙A×˙k×˙B
99 98 mpteq2dva φk0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=k0N(Nk)·˙N+1-k×˙A×˙k×˙B
100 99 oveq2d φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=Rk=0N(Nk)·˙N+1-k×˙A×˙k×˙B
101 ovexd φ0NV
102 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(Nk)0Nk0k0(Nk)·˙Nk×˙A×˙k×˙BS
103 68 71 87 75 102 syl13anc φk0N(Nk)·˙Nk×˙A×˙k×˙BS
104 eqid k0N(Nk)·˙Nk×˙A×˙k×˙B=k0N(Nk)·˙Nk×˙A×˙k×˙B
105 ovexd φk0N(Nk)·˙Nk×˙A×˙k×˙BV
106 fvexd φ0RV
107 104 67 105 106 fsuppmptdm φfinSupp0Rk0N(Nk)·˙Nk×˙A×˙k×˙B
108 1 62 4 2 7 101 8 103 107 srgsummulcr φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A
109 81 100 108 3eqtr2rd φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B
110 109 adantr φψRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙A=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B
111 14 110 eqtrd φψN×˙A+˙B×˙A=Rk=0N+1(Nk)·˙N+1-k×˙A×˙k×˙B