Metamath Proof Explorer


Theorem subfaclim

Description: The subfactorial converges rapidly to N ! / _e . This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion subfaclim NN!eSN<1N

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 nnnn0 NN0
4 faccl N0N!
5 3 4 syl NN!
6 5 nncnd NN!
7 ere e
8 7 recni e
9 epos 0<e
10 7 9 gt0ne0ii e0
11 divcl N!ee0N!e
12 8 10 11 mp3an23 N!N!e
13 6 12 syl NN!e
14 1 2 subfacf S:00
15 14 ffvelcdmi N0SN0
16 3 15 syl NSN0
17 16 nn0cnd NSN
18 13 17 subcld NN!eSN
19 18 abscld NN!eSN
20 peano2nn NN+1
21 20 peano2nnd NN+1+1
22 21 nnred NN+1+1
23 20 20 nnmulcld NN+1N+1
24 22 23 nndivred NN+1+1N+1N+1
25 nnrecre N1N
26 eqid n01nn!=n01nn!
27 eqid n01nn!=n01nn!
28 eqid n01N+1N+1!1N+1+1n=n01N+1N+1!1N+1+1n
29 neg1cn 1
30 29 a1i N1
31 ax-1cn 1
32 31 absnegi 1=1
33 abs1 1=1
34 32 33 eqtri 1=1
35 1le1 11
36 34 35 eqbrtri 11
37 36 a1i N11
38 26 27 28 20 30 37 eftlub NkN+1n01nn!k1N+1N+1+1N+1!N+1
39 20 nnnn0d NN+10
40 eluznn0 N+10kN+1k0
41 39 40 sylan NkN+1k0
42 26 eftval k0n01nn!k=1kk!
43 41 42 syl NkN+1n01nn!k=1kk!
44 43 sumeq2dv NkN+1n01nn!k=kN+11kk!
45 44 fveq2d NkN+1n01nn!k=kN+11kk!
46 34 oveq1i 1N+1=1N+1
47 20 nnzd NN+1
48 1exp N+11N+1=1
49 47 48 syl N1N+1=1
50 46 49 eqtrid N1N+1=1
51 50 oveq1d N1N+1N+1+1N+1!N+1=1N+1+1N+1!N+1
52 faccl N+10N+1!
53 39 52 syl NN+1!
54 53 20 nnmulcld NN+1!N+1
55 22 54 nndivred NN+1+1N+1!N+1
56 55 recnd NN+1+1N+1!N+1
57 56 mullidd N1N+1+1N+1!N+1=N+1+1N+1!N+1
58 51 57 eqtrd N1N+1N+1+1N+1!N+1=N+1+1N+1!N+1
59 38 45 58 3brtr3d NkN+11kk!N+1+1N+1!N+1
60 eqid N+1=N+1
61 eftcl 1k01kk!
62 29 61 mpan k01kk!
63 41 62 syl NkN+11kk!
64 26 eftlcvg 1N+10seqN+1+n01nn!dom
65 29 39 64 sylancr NseqN+1+n01nn!dom
66 60 47 43 63 65 isumcl NkN+11kk!
67 66 abscld NkN+11kk!
68 5 nnred NN!
69 5 nngt0d N0<N!
70 lemul2 kN+11kk!N+1+1N+1!N+1N!0<N!kN+11kk!N+1+1N+1!N+1N!kN+11kk!N!N+1+1N+1!N+1
71 67 55 68 69 70 syl112anc NkN+11kk!N+1+1N+1!N+1N!kN+11kk!N!N+1+1N+1!N+1
72 59 71 mpbid NN!kN+11kk!N!N+1+1N+1!N+1
73 1 2 subfacval2 N0SN=N!k=0N1kk!
74 3 73 syl NSN=N!k=0N1kk!
75 nncn NN
76 pncan N1N+1-1=N
77 75 31 76 sylancl NN+1-1=N
78 77 oveq2d N0N+1-1=0N
79 78 sumeq1d Nk=0N+1-11kk!=k=0N1kk!
80 79 oveq2d NN!k=0N+1-11kk!=N!k=0N1kk!
81 74 80 eqtr4d NSN=N!k=0N+1-11kk!
82 81 oveq1d NSN+N!kN+11kk!=N!k=0N+1-11kk!+N!kN+11kk!
83 divrec N!ee0N!e=N!1e
84 8 10 83 mp3an23 N!N!e=N!1e
85 6 84 syl NN!e=N!1e
86 df-e e=e1
87 86 oveq2i 1e=1e1
88 efneg 1e1=1e1
89 31 88 ax-mp e1=1e1
90 efval 1e1=k01kk!
91 29 90 ax-mp e1=k01kk!
92 87 89 91 3eqtr2i 1e=k01kk!
93 nn0uz 0=0
94 42 adantl Nk0n01nn!k=1kk!
95 62 adantl Nk01kk!
96 0nn0 00
97 26 eftlcvg 100seq0+n01nn!dom
98 29 96 97 mp2an seq0+n01nn!dom
99 98 a1i Nseq0+n01nn!dom
100 93 60 39 94 95 99 isumsplit Nk01kk!=k=0N+1-11kk!+kN+11kk!
101 92 100 eqtrid N1e=k=0N+1-11kk!+kN+11kk!
102 101 oveq2d NN!1e=N!k=0N+1-11kk!+kN+11kk!
103 fzfid N0N+1-1Fin
104 elfznn0 k0N+1-1k0
105 104 adantl Nk0N+1-1k0
106 29 105 61 sylancr Nk0N+1-11kk!
107 103 106 fsumcl Nk=0N+1-11kk!
108 6 107 66 adddid NN!k=0N+1-11kk!+kN+11kk!=N!k=0N+1-11kk!+N!kN+11kk!
109 85 102 108 3eqtrd NN!e=N!k=0N+1-11kk!+N!kN+11kk!
110 82 109 eqtr4d NSN+N!kN+11kk!=N!e
111 6 66 mulcld NN!kN+11kk!
112 13 17 111 subaddd NN!eSN=N!kN+11kk!SN+N!kN+11kk!=N!e
113 110 112 mpbird NN!eSN=N!kN+11kk!
114 113 fveq2d NN!eSN=N!kN+11kk!
115 6 66 absmuld NN!kN+11kk!=N!kN+11kk!
116 5 nnnn0d NN!0
117 116 nn0ge0d N0N!
118 68 117 absidd NN!=N!
119 118 oveq1d NN!kN+11kk!=N!kN+11kk!
120 114 115 119 3eqtrd NN!eSN=N!kN+11kk!
121 facp1 N0N+1!=N!N+1
122 3 121 syl NN+1!=N!N+1
123 122 oveq1d NN+1!N+1=N!N+1N+1
124 20 nncnd NN+1
125 6 124 124 mulassd NN!N+1N+1=N!N+1N+1
126 123 125 eqtr2d NN!N+1N+1=N+1!N+1
127 126 oveq2d NN!N+1+1N!N+1N+1=N!N+1+1N+1!N+1
128 21 nncnd NN+1+1
129 23 nncnd NN+1N+1
130 23 nnne0d NN+1N+10
131 5 nnne0d NN!0
132 128 129 6 130 131 divcan5d NN!N+1+1N!N+1N+1=N+1+1N+1N+1
133 54 nncnd NN+1!N+1
134 54 nnne0d NN+1!N+10
135 6 128 133 134 divassd NN!N+1+1N+1!N+1=N!N+1+1N+1!N+1
136 127 132 135 3eqtr3d NN+1+1N+1N+1=N!N+1+1N+1!N+1
137 72 120 136 3brtr4d NN!eSNN+1+1N+1N+1
138 nnmulcl N+1+1NN+1+1 N
139 21 138 mpancom NN+1+1 N
140 139 nnred NN+1+1 N
141 140 ltp1d NN+1+1 N<N+1+1 N+1
142 129 mullidd N1N+1N+1=N+1N+1
143 31 a1i N1
144 75 143 124 adddird NN+1N+1=NN+1+1N+1
145 75 124 mulcomd NNN+1=N+1 N
146 124 mullidd N1N+1=N+1
147 145 146 oveq12d NNN+1+1N+1=N+1 N+N+1
148 124 143 75 adddird NN+1+1 N=N+1 N+1 N
149 148 oveq1d NN+1+1 N+1=N+1 N+1 N+1
150 75 mullidd N1 N=N
151 150 oveq2d NN+1 N+1 N=N+1 N+N
152 151 oveq1d NN+1 N+1 N+1=N+1 N+N+1
153 124 75 mulcld NN+1 N
154 153 75 143 addassd NN+1 N+N+1=N+1 N+N+1
155 149 152 154 3eqtrd NN+1+1 N+1=N+1 N+N+1
156 147 155 eqtr4d NNN+1+1N+1=N+1+1 N+1
157 142 144 156 3eqtrd N1N+1N+1=N+1+1 N+1
158 141 157 breqtrrd NN+1+1 N<1N+1N+1
159 nnre NN
160 nngt0 N0<N
161 159 160 jca NN0<N
162 1red N1
163 nnre N+1N+1N+1N+1
164 nngt0 N+1N+10<N+1N+1
165 163 164 jca N+1N+1N+1N+10<N+1N+1
166 23 165 syl NN+1N+10<N+1N+1
167 lt2mul2div N+1+1N0<N1N+1N+10<N+1N+1N+1+1 N<1N+1N+1N+1+1N+1N+1<1N
168 22 161 162 166 167 syl22anc NN+1+1 N<1N+1N+1N+1+1N+1N+1<1N
169 158 168 mpbid NN+1+1N+1N+1<1N
170 19 24 25 137 169 lelttrd NN!eSN<1N