Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | subsubelfzo0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 | |
|
2 | elfzo0 | |
|
3 | nnre | |
|
4 | 3 | 3ad2ant2 | |
5 | nn0re | |
|
6 | 5 | adantr | |
7 | resubcl | |
|
8 | 4 6 7 | syl2anr | |
9 | nn0re | |
|
10 | 9 | 3ad2ant1 | |
11 | 10 | adantl | |
12 | lenlt | |
|
13 | 12 | bicomd | |
14 | 8 11 13 | syl2anc | |
15 | 14 | biimpa | |
16 | nnz | |
|
17 | 16 | 3ad2ant2 | |
18 | nn0z | |
|
19 | 18 | adantr | |
20 | zsubcl | |
|
21 | 17 19 20 | syl2anr | |
22 | ltle | |
|
23 | 5 4 22 | syl2an | |
24 | 23 | impancom | |
25 | 24 | imp | |
26 | subge0 | |
|
27 | 4 6 26 | syl2anr | |
28 | 25 27 | mpbird | |
29 | elnn0z | |
|
30 | 21 28 29 | sylanbrc | |
31 | 30 | adantr | |
32 | simplr1 | |
|
33 | nn0sub | |
|
34 | 31 32 33 | syl2anc | |
35 | 15 34 | mpbid | |
36 | elnn0uz | |
|
37 | 35 36 | sylib | |
38 | 19 | adantr | |
39 | 38 | adantr | |
40 | 9 | adantr | |
41 | 40 | adantl | |
42 | 3 | adantl | |
43 | 42 | adantl | |
44 | 42 5 7 | syl2anr | |
45 | 41 43 44 | ltsub1d | |
46 | nncn | |
|
47 | 46 | adantl | |
48 | nn0cn | |
|
49 | nncan | |
|
50 | 47 48 49 | syl2anr | |
51 | 50 | breq2d | |
52 | 51 | biimpd | |
53 | 45 52 | sylbid | |
54 | 53 | ex | |
55 | 54 | adantr | |
56 | 55 | com3l | |
57 | 56 | 3impia | |
58 | 57 | impcom | |
59 | 58 | adantr | |
60 | 37 39 59 | 3jca | |
61 | 60 | exp31 | |
62 | 2 61 | biimtrid | |
63 | 62 | 3adant2 | |
64 | 1 63 | sylbi | |
65 | 64 | 3imp | |
66 | elfzo2 | |
|
67 | 65 66 | sylibr | |