Metamath Proof Explorer


Theorem tgoldbachgt

Description: Odd integers greater than ( ; 1 0 ^ ; 2 7 ) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of Helfgott p. 70 , expressed using the set G of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021)

Ref Expression
Hypotheses tgoldbachgt.o O=z|¬2z
tgoldbachgt.g G=zO|pqrpOqOrOz=p+q+r
Assertion tgoldbachgt mm1027nOm<nnG

Proof

Step Hyp Ref Expression
1 tgoldbachgt.o O=z|¬2z
2 tgoldbachgt.g G=zO|pqrpOqOrOz=p+q+r
3 10nn 10
4 2nn0 20
5 7nn0 70
6 4 5 deccl 270
7 nnexpcl 102701027
8 3 6 7 mp2an 1027
9 8 nnrei 1027
10 9 leidi 10271027
11 simpl nO1027<nnO
12 inss2 O
13 prmssnn
14 12 13 sstri O
15 14 a1i nO1027<ncOrepr3nO
16 1 eleq2i nOnz|¬2z
17 elrabi nz|¬2zn
18 16 17 sylbi nOn
19 18 ad2antrr nO1027<ncOrepr3nn
20 3nn0 30
21 20 a1i nO1027<ncOrepr3n30
22 simpr nO1027<ncOrepr3ncOrepr3n
23 15 19 21 22 reprf nO1027<ncOrepr3nc:0..^3O
24 c0ex 0V
25 24 tpid1 0012
26 fzo0to3tp 0..^3=012
27 25 26 eleqtrri 00..^3
28 27 a1i nO1027<ncOrepr3n00..^3
29 23 28 ffvelcdmd nO1027<ncOrepr3nc0O
30 29 elin2d nO1027<ncOrepr3nc0
31 1ex 1V
32 31 tpid2 1012
33 32 26 eleqtrri 10..^3
34 33 a1i nO1027<ncOrepr3n10..^3
35 23 34 ffvelcdmd nO1027<ncOrepr3nc1O
36 35 elin2d nO1027<ncOrepr3nc1
37 2ex 2V
38 37 tpid3 2012
39 38 26 eleqtrri 20..^3
40 39 a1i nO1027<ncOrepr3n20..^3
41 23 40 ffvelcdmd nO1027<ncOrepr3nc2O
42 41 elin2d nO1027<ncOrepr3nc2
43 29 elin1d nO1027<ncOrepr3nc0O
44 35 elin1d nO1027<ncOrepr3nc1O
45 41 elin1d nO1027<ncOrepr3nc2O
46 43 44 45 3jca nO1027<ncOrepr3nc0Oc1Oc2O
47 26 a1i nO1027<ncOrepr3n0..^3=012
48 47 sumeq1d nO1027<ncOrepr3ni0..^3ci=i012ci
49 15 19 21 22 reprsum nO1027<ncOrepr3ni0..^3ci=n
50 fveq2 i=0ci=c0
51 fveq2 i=1ci=c1
52 fveq2 i=2ci=c2
53 14 29 sselid nO1027<ncOrepr3nc0
54 53 nncnd nO1027<ncOrepr3nc0
55 14 35 sselid nO1027<ncOrepr3nc1
56 55 nncnd nO1027<ncOrepr3nc1
57 14 41 sselid nO1027<ncOrepr3nc2
58 57 nncnd nO1027<ncOrepr3nc2
59 54 56 58 3jca nO1027<ncOrepr3nc0c1c2
60 24 a1i nO1027<ncOrepr3n0V
61 31 a1i nO1027<ncOrepr3n1V
62 37 a1i nO1027<ncOrepr3n2V
63 60 61 62 3jca nO1027<ncOrepr3n0V1V2V
64 0ne1 01
65 64 a1i nO1027<ncOrepr3n01
66 0ne2 02
67 66 a1i nO1027<ncOrepr3n02
68 1ne2 12
69 68 a1i nO1027<ncOrepr3n12
70 50 51 52 59 63 65 67 69 sumtp nO1027<ncOrepr3ni012ci=c0+c1+c2
71 48 49 70 3eqtr3d nO1027<ncOrepr3nn=c0+c1+c2
72 46 71 jca nO1027<ncOrepr3nc0Oc1Oc2On=c0+c1+c2
73 eleq1 p=c0pOc0O
74 73 3anbi1d p=c0pOqOrOc0OqOrO
75 oveq1 p=c0p+q=c0+q
76 75 oveq1d p=c0p+q+r=c0+q+r
77 76 eqeq2d p=c0n=p+q+rn=c0+q+r
78 74 77 anbi12d p=c0pOqOrOn=p+q+rc0OqOrOn=c0+q+r
79 eleq1 q=c1qOc1O
80 79 3anbi2d q=c1c0OqOrOc0Oc1OrO
81 oveq2 q=c1c0+q=c0+c1
82 81 oveq1d q=c1c0+q+r=c0+c1+r
83 82 eqeq2d q=c1n=c0+q+rn=c0+c1+r
84 80 83 anbi12d q=c1c0OqOrOn=c0+q+rc0Oc1OrOn=c0+c1+r
85 eleq1 r=c2rOc2O
86 85 3anbi3d r=c2c0Oc1OrOc0Oc1Oc2O
87 oveq2 r=c2c0+c1+r=c0+c1+c2
88 87 eqeq2d r=c2n=c0+c1+rn=c0+c1+c2
89 86 88 anbi12d r=c2c0Oc1OrOn=c0+c1+rc0Oc1Oc2On=c0+c1+c2
90 78 84 89 rspc3ev c0c1c2c0Oc1Oc2On=c0+c1+c2pqrpOqOrOn=p+q+r
91 30 36 42 72 90 syl31anc nO1027<ncOrepr3npqrpOqOrOn=p+q+r
92 91 adantr nO1027<ncOrepr3npqrpOqOrOn=p+q+r
93 8 a1i nO1027<n1027
94 93 nnred nO1027<n1027
95 18 zred nOn
96 95 adantr nO1027<nn
97 simpr nO1027<n1027<n
98 94 96 97 ltled nO1027<n1027n
99 1 11 98 tgoldbachgtd nO1027<n0<Orepr3n
100 ovex Orepr3nV
101 hashneq0 Orepr3nV0<Orepr3nOrepr3n
102 100 101 ax-mp 0<Orepr3nOrepr3n
103 99 102 sylib nO1027<nOrepr3n
104 103 neneqd nO1027<n¬Orepr3n=
105 neq0 ¬Orepr3n=ccOrepr3n
106 104 105 sylib nO1027<nccOrepr3n
107 tru
108 106 107 jctil nO1027<nccOrepr3n
109 19.42v ccOrepr3nccOrepr3n
110 108 109 sylibr nO1027<nccOrepr3n
111 exancom ccOrepr3nccOrepr3n
112 110 111 sylib nO1027<nccOrepr3n
113 df-rex cOrepr3nccOrepr3n
114 112 113 sylibr nO1027<ncOrepr3n
115 92 114 r19.29a nO1027<npqrpOqOrOn=p+q+r
116 2 eleq2i nGnzO|pqrpOqOrOz=p+q+r
117 eqeq1 z=nz=p+q+rn=p+q+r
118 117 anbi2d z=npOqOrOz=p+q+rpOqOrOn=p+q+r
119 118 rexbidv z=nrpOqOrOz=p+q+rrpOqOrOn=p+q+r
120 119 rexbidv z=nqrpOqOrOz=p+q+rqrpOqOrOn=p+q+r
121 120 rexbidv z=npqrpOqOrOz=p+q+rpqrpOqOrOn=p+q+r
122 121 elrab3 nOnzO|pqrpOqOrOz=p+q+rpqrpOqOrOn=p+q+r
123 116 122 bitrid nOnGpqrpOqOrOn=p+q+r
124 123 biimpar nOpqrpOqOrOn=p+q+rnG
125 11 115 124 syl2anc nO1027<nnG
126 125 ex nO1027<nnG
127 126 rgen nO1027<nnG
128 10 127 pm3.2i 10271027nO1027<nnG
129 breq1 m=1027m102710271027
130 breq1 m=1027m<n1027<n
131 130 imbi1d m=1027m<nnG1027<nnG
132 131 ralbidv m=1027nOm<nnGnO1027<nnG
133 129 132 anbi12d m=1027m1027nOm<nnG10271027nO1027<nnG
134 133 rspcev 102710271027nO1027<nnGmm1027nOm<nnG
135 8 128 134 mp2an mm1027nOm<nnG