| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcmp.x |  | 
						
							| 2 |  | txcmp.y |  | 
						
							| 3 |  | txcmp.r |  | 
						
							| 4 |  | txcmp.s |  | 
						
							| 5 |  | txcmp.w |  | 
						
							| 6 |  | txcmp.u |  | 
						
							| 7 |  | txcmp.a |  | 
						
							| 8 |  | id |  | 
						
							| 9 |  | opelxpi |  | 
						
							| 10 | 8 7 9 | syl2anr |  | 
						
							| 11 | 6 | adantr |  | 
						
							| 12 | 10 11 | eleqtrd |  | 
						
							| 13 |  | eluni2 |  | 
						
							| 14 | 12 13 | sylib |  | 
						
							| 15 | 5 | adantr |  | 
						
							| 16 | 15 | sselda |  | 
						
							| 17 |  | eltx |  | 
						
							| 18 | 3 4 17 | syl2anc |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | biimpa |  | 
						
							| 21 | 16 20 | syldan |  | 
						
							| 22 |  | eleq1 |  | 
						
							| 23 | 22 | anbi1d |  | 
						
							| 24 | 23 | 2rexbidv |  | 
						
							| 25 | 24 | rspccv |  | 
						
							| 26 | 21 25 | syl |  | 
						
							| 27 |  | opelxp1 |  | 
						
							| 28 | 27 | ad2antrl |  | 
						
							| 29 |  | opelxp2 |  | 
						
							| 30 | 29 | ad2antrl |  | 
						
							| 31 | 30 | snssd |  | 
						
							| 32 |  | xpss2 |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 |  | simprr |  | 
						
							| 35 | 33 34 | sstrd |  | 
						
							| 36 | 28 35 | jca |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 | 37 | rexlimdvw |  | 
						
							| 39 | 38 | reximdv |  | 
						
							| 40 | 26 39 | syld |  | 
						
							| 41 | 40 | reximdva |  | 
						
							| 42 | 14 41 | mpd |  | 
						
							| 43 |  | rexcom |  | 
						
							| 44 |  | r19.42v |  | 
						
							| 45 | 44 | rexbii |  | 
						
							| 46 | 43 45 | bitri |  | 
						
							| 47 | 42 46 | sylib |  | 
						
							| 48 | 47 | ralrimiva |  | 
						
							| 49 |  | sseq2 |  | 
						
							| 50 | 1 49 | cmpcovf |  | 
						
							| 51 | 3 48 50 | syl2anc |  | 
						
							| 52 | 3 | ad2antrr |  | 
						
							| 53 |  | cmptop |  | 
						
							| 54 | 4 53 | syl |  | 
						
							| 55 | 54 | ad2antrr |  | 
						
							| 56 |  | cmptop |  | 
						
							| 57 | 52 56 | syl |  | 
						
							| 58 |  | txtop |  | 
						
							| 59 | 57 55 58 | syl2anc |  | 
						
							| 60 |  | simprrl |  | 
						
							| 61 | 60 | frnd |  | 
						
							| 62 | 5 | ad2antrr |  | 
						
							| 63 | 61 62 | sstrd |  | 
						
							| 64 |  | uniopn |  | 
						
							| 65 | 59 63 64 | syl2anc |  | 
						
							| 66 |  | simprrr |  | 
						
							| 67 |  | ss2iun |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 |  | simprl |  | 
						
							| 70 |  | uniiun |  | 
						
							| 71 | 69 70 | eqtrdi |  | 
						
							| 72 | 71 | xpeq1d |  | 
						
							| 73 |  | xpiundir |  | 
						
							| 74 | 72 73 | eqtr2di |  | 
						
							| 75 | 60 | ffnd |  | 
						
							| 76 |  | fniunfv |  | 
						
							| 77 | 75 76 | syl |  | 
						
							| 78 | 68 74 77 | 3sstr3d |  | 
						
							| 79 | 7 | ad2antrr |  | 
						
							| 80 | 1 2 52 55 65 78 79 | txtube |  | 
						
							| 81 |  | vex |  | 
						
							| 82 | 81 | rnex |  | 
						
							| 83 | 82 | elpw |  | 
						
							| 84 | 61 83 | sylibr |  | 
						
							| 85 |  | simplr |  | 
						
							| 86 | 85 | elin2d |  | 
						
							| 87 |  | dffn4 |  | 
						
							| 88 | 75 87 | sylib |  | 
						
							| 89 |  | fofi |  | 
						
							| 90 | 86 88 89 | syl2anc |  | 
						
							| 91 | 84 90 | elind |  | 
						
							| 92 |  | unieq |  | 
						
							| 93 | 92 | sseq2d |  | 
						
							| 94 | 93 | rspcev |  | 
						
							| 95 | 94 | ex |  | 
						
							| 96 | 91 95 | syl |  | 
						
							| 97 | 96 | anim2d |  | 
						
							| 98 | 97 | reximdv |  | 
						
							| 99 | 80 98 | mpd |  | 
						
							| 100 | 99 | expr |  | 
						
							| 101 | 100 | exlimdv |  | 
						
							| 102 | 101 | expimpd |  | 
						
							| 103 | 102 | rexlimdva |  | 
						
							| 104 | 51 103 | mpd |  |