Metamath Proof Explorer


Theorem txcmplem1

Description: Lemma for txcmp . (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses txcmp.x X=R
txcmp.y Y=S
txcmp.r φRComp
txcmp.s φSComp
txcmp.w φWR×tS
txcmp.u φX×Y=W
txcmp.a φAY
Assertion txcmplem1 φuSAuv𝒫WFinX×uv

Proof

Step Hyp Ref Expression
1 txcmp.x X=R
2 txcmp.y Y=S
3 txcmp.r φRComp
4 txcmp.s φSComp
5 txcmp.w φWR×tS
6 txcmp.u φX×Y=W
7 txcmp.a φAY
8 id xXxX
9 opelxpi xXAYxAX×Y
10 8 7 9 syl2anr φxXxAX×Y
11 6 adantr φxXX×Y=W
12 10 11 eleqtrd φxXxAW
13 eluni2 xAWkWxAk
14 12 13 sylib φxXkWxAk
15 5 adantr φxXWR×tS
16 15 sselda φxXkWkR×tS
17 eltx RCompSCompkR×tSykrRsSyr×sr×sk
18 3 4 17 syl2anc φkR×tSykrRsSyr×sr×sk
19 18 adantr φxXkR×tSykrRsSyr×sr×sk
20 19 biimpa φxXkR×tSykrRsSyr×sr×sk
21 16 20 syldan φxXkWykrRsSyr×sr×sk
22 eleq1 y=xAyr×sxAr×s
23 22 anbi1d y=xAyr×sr×skxAr×sr×sk
24 23 2rexbidv y=xArRsSyr×sr×skrRsSxAr×sr×sk
25 24 rspccv ykrRsSyr×sr×skxAkrRsSxAr×sr×sk
26 21 25 syl φxXkWxAkrRsSxAr×sr×sk
27 opelxp1 xAr×sxr
28 27 ad2antrl φxXkWxAr×sr×skxr
29 opelxp2 xAr×sAs
30 29 ad2antrl φxXkWxAr×sr×skAs
31 30 snssd φxXkWxAr×sr×skAs
32 xpss2 Asr×Ar×s
33 31 32 syl φxXkWxAr×sr×skr×Ar×s
34 simprr φxXkWxAr×sr×skr×sk
35 33 34 sstrd φxXkWxAr×sr×skr×Ak
36 28 35 jca φxXkWxAr×sr×skxrr×Ak
37 36 ex φxXkWxAr×sr×skxrr×Ak
38 37 rexlimdvw φxXkWsSxAr×sr×skxrr×Ak
39 38 reximdv φxXkWrRsSxAr×sr×skrRxrr×Ak
40 26 39 syld φxXkWxAkrRxrr×Ak
41 40 reximdva φxXkWxAkkWrRxrr×Ak
42 14 41 mpd φxXkWrRxrr×Ak
43 rexcom kWrRxrr×AkrRkWxrr×Ak
44 r19.42v kWxrr×AkxrkWr×Ak
45 44 rexbii rRkWxrr×AkrRxrkWr×Ak
46 43 45 bitri kWrRxrr×AkrRxrkWr×Ak
47 42 46 sylib φxXrRxrkWr×Ak
48 47 ralrimiva φxXrRxrkWr×Ak
49 sseq2 k=frr×Akr×Afr
50 1 49 cmpcovf RCompxXrRxrkWr×Akt𝒫RFinX=tff:tWrtr×Afr
51 3 48 50 syl2anc φt𝒫RFinX=tff:tWrtr×Afr
52 3 ad2antrr φt𝒫RFinX=tf:tWrtr×AfrRComp
53 cmptop SCompSTop
54 4 53 syl φSTop
55 54 ad2antrr φt𝒫RFinX=tf:tWrtr×AfrSTop
56 cmptop RCompRTop
57 52 56 syl φt𝒫RFinX=tf:tWrtr×AfrRTop
58 txtop RTopSTopR×tSTop
59 57 55 58 syl2anc φt𝒫RFinX=tf:tWrtr×AfrR×tSTop
60 simprrl φt𝒫RFinX=tf:tWrtr×Afrf:tW
61 60 frnd φt𝒫RFinX=tf:tWrtr×AfrranfW
62 5 ad2antrr φt𝒫RFinX=tf:tWrtr×AfrWR×tS
63 61 62 sstrd φt𝒫RFinX=tf:tWrtr×AfrranfR×tS
64 uniopn R×tSTopranfR×tSranfR×tS
65 59 63 64 syl2anc φt𝒫RFinX=tf:tWrtr×AfrranfR×tS
66 simprrr φt𝒫RFinX=tf:tWrtr×Afrrtr×Afr
67 ss2iun rtr×Afrrtr×Artfr
68 66 67 syl φt𝒫RFinX=tf:tWrtr×Afrrtr×Artfr
69 simprl φt𝒫RFinX=tf:tWrtr×AfrX=t
70 uniiun t=rtr
71 69 70 eqtrdi φt𝒫RFinX=tf:tWrtr×AfrX=rtr
72 71 xpeq1d φt𝒫RFinX=tf:tWrtr×AfrX×A=rtr×A
73 xpiundir rtr×A=rtr×A
74 72 73 eqtr2di φt𝒫RFinX=tf:tWrtr×Afrrtr×A=X×A
75 60 ffnd φt𝒫RFinX=tf:tWrtr×AfrfFnt
76 fniunfv fFntrtfr=ranf
77 75 76 syl φt𝒫RFinX=tf:tWrtr×Afrrtfr=ranf
78 68 74 77 3sstr3d φt𝒫RFinX=tf:tWrtr×AfrX×Aranf
79 7 ad2antrr φt𝒫RFinX=tf:tWrtr×AfrAY
80 1 2 52 55 65 78 79 txtube φt𝒫RFinX=tf:tWrtr×AfruSAuX×uranf
81 vex fV
82 81 rnex ranfV
83 82 elpw ranf𝒫WranfW
84 61 83 sylibr φt𝒫RFinX=tf:tWrtr×Afrranf𝒫W
85 simplr φt𝒫RFinX=tf:tWrtr×Afrt𝒫RFin
86 85 elin2d φt𝒫RFinX=tf:tWrtr×AfrtFin
87 dffn4 fFntf:tontoranf
88 75 87 sylib φt𝒫RFinX=tf:tWrtr×Afrf:tontoranf
89 fofi tFinf:tontoranfranfFin
90 86 88 89 syl2anc φt𝒫RFinX=tf:tWrtr×AfrranfFin
91 84 90 elind φt𝒫RFinX=tf:tWrtr×Afrranf𝒫WFin
92 unieq v=ranfv=ranf
93 92 sseq2d v=ranfX×uvX×uranf
94 93 rspcev ranf𝒫WFinX×uranfv𝒫WFinX×uv
95 94 ex ranf𝒫WFinX×uranfv𝒫WFinX×uv
96 91 95 syl φt𝒫RFinX=tf:tWrtr×AfrX×uranfv𝒫WFinX×uv
97 96 anim2d φt𝒫RFinX=tf:tWrtr×AfrAuX×uranfAuv𝒫WFinX×uv
98 97 reximdv φt𝒫RFinX=tf:tWrtr×AfruSAuX×uranfuSAuv𝒫WFinX×uv
99 80 98 mpd φt𝒫RFinX=tf:tWrtr×AfruSAuv𝒫WFinX×uv
100 99 expr φt𝒫RFinX=tf:tWrtr×AfruSAuv𝒫WFinX×uv
101 100 exlimdv φt𝒫RFinX=tff:tWrtr×AfruSAuv𝒫WFinX×uv
102 101 expimpd φt𝒫RFinX=tff:tWrtr×AfruSAuv𝒫WFinX×uv
103 102 rexlimdva φt𝒫RFinX=tff:tWrtr×AfruSAuv𝒫WFinX×uv
104 51 103 mpd φuSAuv𝒫WFinX×uv