Metamath Proof Explorer


Theorem uspgrsprfo

Description: The mapping F is a function from the "simple pseudographs" with a fixed set of vertices V onto the subsets of the set of pairs over the set V . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrsprf.f F=gG2ndg
Assertion uspgrsprfo VWF:GontoP

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 uspgrsprf.f F=gG2ndg
4 1 2 3 uspgrsprf F:GP
5 4 a1i VWF:GP
6 1 eleq2i aPa𝒫PairsV
7 velpw a𝒫PairsVaPairsV
8 6 7 bitri aPaPairsV
9 eqidd aPairsVVWV=V
10 vex aV
11 10 a1i aPairsVVWaV
12 f1oi Ia:a1-1 ontoa
13 12 a1i aPairsVVWIa:a1-1 ontoa
14 dmresi domIa=a
15 f1oeq2 domIa=aIa:domIa1-1 ontoaIa:a1-1 ontoa
16 14 15 ax-mp Ia:domIa1-1 ontoaIa:a1-1 ontoa
17 13 16 sylibr aPairsVVWIa:domIa1-1 ontoa
18 sprvalpwle2 VWPairsV=p𝒫V|p2
19 18 sseq2d VWaPairsVap𝒫V|p2
20 19 biimpac aPairsVVWap𝒫V|p2
21 17 20 jca aPairsVVWIa:domIa1-1 ontoaap𝒫V|p2
22 f1oeq3 f=aIa:domIa1-1 ontofIa:domIa1-1 ontoa
23 sseq1 f=afp𝒫V|p2ap𝒫V|p2
24 22 23 anbi12d f=aIa:domIa1-1 ontoffp𝒫V|p2Ia:domIa1-1 ontoaap𝒫V|p2
25 11 21 24 spcedv aPairsVVWfIa:domIa1-1 ontoffp𝒫V|p2
26 resiexg aVIaV
27 10 26 ax-mp IaV
28 27 f11o Ia:domIa1-1p𝒫V|p2fIa:domIa1-1 ontoffp𝒫V|p2
29 25 28 sylibr aPairsVVWIa:domIa1-1p𝒫V|p2
30 10 a1i aPairsVaV
31 30 resiexd aPairsVIaV
32 31 anim1ci aPairsVVWVWIaV
33 isuspgrop VWIaVVIaUSHGraphIa:domIa1-1p𝒫V|p2
34 32 33 syl aPairsVVWVIaUSHGraphIa:domIa1-1p𝒫V|p2
35 29 34 mpbird aPairsVVWVIaUSHGraph
36 fveqeq2 q=VIaVtxq=VVtxVIa=V
37 fveqeq2 q=VIaEdgq=aEdgVIa=a
38 36 37 anbi12d q=VIaVtxq=VEdgq=aVtxVIa=VEdgVIa=a
39 38 adantl aPairsVVWq=VIaVtxq=VEdgq=aVtxVIa=VEdgVIa=a
40 opvtxfv VWIaVVtxVIa=V
41 31 40 sylan2 VWaPairsVVtxVIa=V
42 edgopval VWIaVEdgVIa=ranIa
43 31 42 sylan2 VWaPairsVEdgVIa=ranIa
44 rnresi ranIa=a
45 43 44 eqtrdi VWaPairsVEdgVIa=a
46 41 45 jca VWaPairsVVtxVIa=VEdgVIa=a
47 46 ancoms aPairsVVWVtxVIa=VEdgVIa=a
48 35 39 47 rspcedvd aPairsVVWqUSHGraphVtxq=VEdgq=a
49 9 48 jca aPairsVVWV=VqUSHGraphVtxq=VEdgq=a
50 2 eleq2i VaGVave|v=VqUSHGraphVtxq=vEdgq=e
51 30 anim1ci aPairsVVWVWaV
52 eqeq1 v=Vv=VV=V
53 52 adantr v=Ve=av=VV=V
54 eqeq2 v=VVtxq=vVtxq=V
55 eqeq2 e=aEdgq=eEdgq=a
56 54 55 bi2anan9 v=Ve=aVtxq=vEdgq=eVtxq=VEdgq=a
57 56 rexbidv v=Ve=aqUSHGraphVtxq=vEdgq=eqUSHGraphVtxq=VEdgq=a
58 53 57 anbi12d v=Ve=av=VqUSHGraphVtxq=vEdgq=eV=VqUSHGraphVtxq=VEdgq=a
59 58 opelopabga VWaVVave|v=VqUSHGraphVtxq=vEdgq=eV=VqUSHGraphVtxq=VEdgq=a
60 51 59 syl aPairsVVWVave|v=VqUSHGraphVtxq=vEdgq=eV=VqUSHGraphVtxq=VEdgq=a
61 50 60 bitrid aPairsVVWVaGV=VqUSHGraphVtxq=VEdgq=a
62 49 61 mpbird aPairsVVWVaG
63 fveq2 b=Va2ndb=2ndVa
64 63 eqeq2d b=Vaa=2ndba=2ndVa
65 64 adantl aPairsVVWb=Vaa=2ndba=2ndVa
66 op2ndg VWaV2ndVa=a
67 66 elvd VW2ndVa=a
68 67 adantl aPairsVVW2ndVa=a
69 68 eqcomd aPairsVVWa=2ndVa
70 62 65 69 rspcedvd aPairsVVWbGa=2ndb
71 70 ex aPairsVVWbGa=2ndb
72 8 71 sylbi aPVWbGa=2ndb
73 72 impcom VWaPbGa=2ndb
74 1 2 3 uspgrsprfv bGFb=2ndb
75 74 adantl VWaPbGFb=2ndb
76 75 eqeq2d VWaPbGa=Fba=2ndb
77 76 rexbidva VWaPbGa=FbbGa=2ndb
78 73 77 mpbird VWaPbGa=Fb
79 78 ralrimiva VWaPbGa=Fb
80 dffo3 F:GontoPF:GPaPbGa=Fb
81 5 79 80 sylanbrc VWF:GontoP