Metamath Proof Explorer


Theorem vdwlem11

Description: Lemma for vdw . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdw.r φ R Fin
vdwlem9.k φ K 2
vdwlem9.s φ s Fin n f s 1 n K MonoAP f
Assertion vdwlem11 φ n f R 1 n K + 1 MonoAP f

Proof

Step Hyp Ref Expression
1 vdw.r φ R Fin
2 vdwlem9.k φ K 2
3 vdwlem9.s φ s Fin n f s 1 n K MonoAP f
4 hashcl R Fin R 0
5 1 4 syl φ R 0
6 nn0p1nn R 0 R + 1
7 5 6 syl φ R + 1
8 1 2 3 7 vdwlem10 φ n f R 1 n R + 1 K PolyAP f K + 1 MonoAP f
9 1 adantr φ n R Fin
10 ovex 1 n V
11 elmapg R Fin 1 n V f R 1 n f : 1 n R
12 9 10 11 sylancl φ n f R 1 n f : 1 n R
13 12 biimpa φ n f R 1 n f : 1 n R
14 5 nn0red φ R
15 14 ltp1d φ R < R + 1
16 peano2re R R + 1
17 14 16 syl φ R + 1
18 14 17 ltnled φ R < R + 1 ¬ R + 1 R
19 15 18 mpbid φ ¬ R + 1 R
20 19 adantr φ n f : 1 n R ¬ R + 1 R
21 eluz2nn K 2 K
22 2 21 syl φ K
23 22 adantr φ n f : 1 n R K
24 23 nnnn0d φ n f : 1 n R K 0
25 simprr φ n f : 1 n R f : 1 n R
26 7 adantr φ n f : 1 n R R + 1
27 eqid 1 R + 1 = 1 R + 1
28 10 24 25 26 27 vdwpc φ n f : 1 n R R + 1 K PolyAP f a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i = R + 1
29 1 ad3antrrr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i R Fin
30 25 ad2antrr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 f : 1 n R
31 25 ad3antrrr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i f : 1 n R
32 simpr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i AP K d i f -1 f a + d i
33 cnvimass f -1 f a + d i dom f
34 32 33 sstrdi φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i AP K d i dom f
35 31 34 fssdmd φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i AP K d i 1 n
36 22 ad3antrrr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 K
37 simplrl φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a
38 simprr φ n f : 1 n R a d 1 R + 1 d 1 R + 1
39 nnex V
40 ovex 1 R + 1 V
41 39 40 elmap d 1 R + 1 d : 1 R + 1
42 38 41 sylib φ n f : 1 n R a d 1 R + 1 d : 1 R + 1
43 42 ffvelrnda φ n f : 1 n R a d 1 R + 1 i 1 R + 1 d i
44 37 43 nnaddcld φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i
45 vdwapid1 K a + d i d i a + d i a + d i AP K d i
46 36 44 43 45 syl3anc φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i a + d i AP K d i
47 46 adantr φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i a + d i AP K d i
48 35 47 sseldd φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i 1 n
49 48 ex φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i a + d i 1 n
50 ffvelrn f : 1 n R a + d i 1 n f a + d i R
51 30 49 50 syl6an φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i f a + d i R
52 51 ralimdva φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i i 1 R + 1 f a + d i R
53 52 imp φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i i 1 R + 1 f a + d i R
54 eqid i 1 R + 1 f a + d i = i 1 R + 1 f a + d i
55 54 fmpt i 1 R + 1 f a + d i R i 1 R + 1 f a + d i : 1 R + 1 R
56 53 55 sylib φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i i 1 R + 1 f a + d i : 1 R + 1 R
57 56 frnd φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i R
58 ssdomg R Fin ran i 1 R + 1 f a + d i R ran i 1 R + 1 f a + d i R
59 29 57 58 sylc φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i R
60 29 57 ssfid φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i Fin
61 hashdom ran i 1 R + 1 f a + d i Fin R Fin ran i 1 R + 1 f a + d i R ran i 1 R + 1 f a + d i R
62 60 29 61 syl2anc φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i R ran i 1 R + 1 f a + d i R
63 59 62 mpbird φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i R
64 breq1 ran i 1 R + 1 f a + d i = R + 1 ran i 1 R + 1 f a + d i R R + 1 R
65 63 64 syl5ibcom φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i = R + 1 R + 1 R
66 65 expimpd φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i = R + 1 R + 1 R
67 66 rexlimdvva φ n f : 1 n R a d 1 R + 1 i 1 R + 1 a + d i AP K d i f -1 f a + d i ran i 1 R + 1 f a + d i = R + 1 R + 1 R
68 28 67 sylbid φ n f : 1 n R R + 1 K PolyAP f R + 1 R
69 20 68 mtod φ n f : 1 n R ¬ R + 1 K PolyAP f
70 biorf ¬ R + 1 K PolyAP f K + 1 MonoAP f R + 1 K PolyAP f K + 1 MonoAP f
71 69 70 syl φ n f : 1 n R K + 1 MonoAP f R + 1 K PolyAP f K + 1 MonoAP f
72 71 anassrs φ n f : 1 n R K + 1 MonoAP f R + 1 K PolyAP f K + 1 MonoAP f
73 13 72 syldan φ n f R 1 n K + 1 MonoAP f R + 1 K PolyAP f K + 1 MonoAP f
74 73 ralbidva φ n f R 1 n K + 1 MonoAP f f R 1 n R + 1 K PolyAP f K + 1 MonoAP f
75 74 rexbidva φ n f R 1 n K + 1 MonoAP f n f R 1 n R + 1 K PolyAP f K + 1 MonoAP f
76 8 75 mpbird φ n f R 1 n K + 1 MonoAP f