Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
|
2 |
|
vdwlem9.k |
|
3 |
|
vdwlem9.s |
|
4 |
|
hashcl |
|
5 |
1 4
|
syl |
|
6 |
|
nn0p1nn |
|
7 |
5 6
|
syl |
|
8 |
1 2 3 7
|
vdwlem10 |
|
9 |
1
|
adantr |
|
10 |
|
ovex |
|
11 |
|
elmapg |
|
12 |
9 10 11
|
sylancl |
|
13 |
12
|
biimpa |
|
14 |
5
|
nn0red |
|
15 |
14
|
ltp1d |
|
16 |
|
peano2re |
|
17 |
14 16
|
syl |
|
18 |
14 17
|
ltnled |
|
19 |
15 18
|
mpbid |
|
20 |
19
|
adantr |
|
21 |
|
eluz2nn |
|
22 |
2 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
23
|
nnnn0d |
|
25 |
|
simprr |
|
26 |
7
|
adantr |
|
27 |
|
eqid |
|
28 |
10 24 25 26 27
|
vdwpc |
|
29 |
1
|
ad3antrrr |
|
30 |
25
|
ad2antrr |
|
31 |
25
|
ad3antrrr |
|
32 |
|
simpr |
|
33 |
|
cnvimass |
|
34 |
32 33
|
sstrdi |
|
35 |
31 34
|
fssdmd |
|
36 |
22
|
ad3antrrr |
|
37 |
|
simplrl |
|
38 |
|
simprr |
|
39 |
|
nnex |
|
40 |
|
ovex |
|
41 |
39 40
|
elmap |
|
42 |
38 41
|
sylib |
|
43 |
42
|
ffvelrnda |
|
44 |
37 43
|
nnaddcld |
|
45 |
|
vdwapid1 |
|
46 |
36 44 43 45
|
syl3anc |
|
47 |
46
|
adantr |
|
48 |
35 47
|
sseldd |
|
49 |
48
|
ex |
|
50 |
|
ffvelrn |
|
51 |
30 49 50
|
syl6an |
|
52 |
51
|
ralimdva |
|
53 |
52
|
imp |
|
54 |
|
eqid |
|
55 |
54
|
fmpt |
|
56 |
53 55
|
sylib |
|
57 |
56
|
frnd |
|
58 |
|
ssdomg |
|
59 |
29 57 58
|
sylc |
|
60 |
29 57
|
ssfid |
|
61 |
|
hashdom |
|
62 |
60 29 61
|
syl2anc |
|
63 |
59 62
|
mpbird |
|
64 |
|
breq1 |
|
65 |
63 64
|
syl5ibcom |
|
66 |
65
|
expimpd |
|
67 |
66
|
rexlimdvva |
|
68 |
28 67
|
sylbid |
|
69 |
20 68
|
mtod |
|
70 |
|
biorf |
|
71 |
69 70
|
syl |
|
72 |
71
|
anassrs |
|
73 |
13 72
|
syldan |
|
74 |
73
|
ralbidva |
|
75 |
74
|
rexbidva |
|
76 |
8 75
|
mpbird |
|