Metamath Proof Explorer


Theorem vmalogdivsum

Description: The sum sum_ n <_ x , Lam ( n ) log n / n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . Exercise 9.1.7 of Shapiro, p. 336. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion vmalogdivsum x1+∞n=1xΛnnlognlogxlogx2𝑂1

Proof

Step Hyp Ref Expression
1 elioore x1+∞x
2 1 adantl x1+∞x
3 1rp 1+
4 3 a1i x1+∞1+
5 1red x1+∞1
6 eliooord x1+∞1<xx<+∞
7 6 adantl x1+∞1<xx<+∞
8 7 simpld x1+∞1<x
9 5 2 8 ltled x1+∞1x
10 2 4 9 rpgecld x1+∞x+
11 10 ex x1+∞x+
12 11 ssrdv 1+∞+
13 vmadivsum x+n=1xΛnnlogx𝑂1
14 13 a1i x+n=1xΛnnlogx𝑂1
15 12 14 o1res2 x1+∞n=1xΛnnlogx𝑂1
16 fzfid x1+∞1xFin
17 elfznn n1xn
18 17 adantl x1+∞n1xn
19 vmacl nΛn
20 18 19 syl x1+∞n1xΛn
21 20 18 nndivred x1+∞n1xΛnn
22 21 recnd x1+∞n1xΛnn
23 16 22 fsumcl x1+∞n=1xΛnn
24 10 relogcld x1+∞logx
25 24 recnd x1+∞logx
26 23 25 subcld x1+∞n=1xΛnnlogx
27 18 nnrpd x1+∞n1xn+
28 27 relogcld x1+∞n1xlogn
29 21 28 remulcld x1+∞n1xΛnnlogn
30 16 29 fsumrecl x1+∞n=1xΛnnlogn
31 2 8 rplogcld x1+∞logx+
32 30 31 rerpdivcld x1+∞n=1xΛnnlognlogx
33 24 rehalfcld x1+∞logx2
34 32 33 resubcld x1+∞n=1xΛnnlognlogxlogx2
35 34 recnd x1+∞n=1xΛnnlognlogxlogx2
36 33 recnd x1+∞logx2
37 23 36 subcld x1+∞n=1xΛnnlogx2
38 32 recnd x1+∞n=1xΛnnlognlogx
39 37 38 36 nnncan2d x1+∞n=1xΛnnlogx2-logx2-n=1xΛnnlognlogxlogx2=n=1xΛnn-logx2-n=1xΛnnlognlogx
40 23 36 36 subsub4d x1+∞n=1xΛnn-logx2-logx2=n=1xΛnnlogx2+logx2
41 25 2halvesd x1+∞logx2+logx2=logx
42 41 oveq2d x1+∞n=1xΛnnlogx2+logx2=n=1xΛnnlogx
43 40 42 eqtrd x1+∞n=1xΛnn-logx2-logx2=n=1xΛnnlogx
44 43 oveq1d x1+∞n=1xΛnnlogx2-logx2-n=1xΛnnlognlogxlogx2=n=1xΛnn-logx-n=1xΛnnlognlogxlogx2
45 23 36 38 sub32d x1+∞n=1xΛnn-logx2-n=1xΛnnlognlogx=n=1xΛnn-n=1xΛnnlognlogx-logx2
46 10 adantr x1+∞n1xx+
47 46 relogcld x1+∞n1xlogx
48 21 47 remulcld x1+∞n1xΛnnlogx
49 48 recnd x1+∞n1xΛnnlogx
50 29 recnd x1+∞n1xΛnnlogn
51 16 49 50 fsumsub x1+∞n=1xΛnnlogxΛnnlogn=n=1xΛnnlogxn=1xΛnnlogn
52 46 27 relogdivd x1+∞n1xlogxn=logxlogn
53 52 oveq2d x1+∞n1xΛnnlogxn=Λnnlogxlogn
54 25 adantr x1+∞n1xlogx
55 28 recnd x1+∞n1xlogn
56 22 54 55 subdid x1+∞n1xΛnnlogxlogn=ΛnnlogxΛnnlogn
57 53 56 eqtrd x1+∞n1xΛnnlogxn=ΛnnlogxΛnnlogn
58 57 sumeq2dv x1+∞n=1xΛnnlogxn=n=1xΛnnlogxΛnnlogn
59 20 recnd x1+∞n1xΛn
60 18 nncnd x1+∞n1xn
61 18 nnne0d x1+∞n1xn0
62 59 60 61 divcld x1+∞n1xΛnn
63 16 25 62 fsummulc1 x1+∞n=1xΛnnlogx=n=1xΛnnlogx
64 63 oveq1d x1+∞n=1xΛnnlogxn=1xΛnnlogn=n=1xΛnnlogxn=1xΛnnlogn
65 51 58 64 3eqtr4d x1+∞n=1xΛnnlogxn=n=1xΛnnlogxn=1xΛnnlogn
66 65 oveq1d x1+∞n=1xΛnnlogxnlogx=n=1xΛnnlogxn=1xΛnnlognlogx
67 23 25 mulcld x1+∞n=1xΛnnlogx
68 30 recnd x1+∞n=1xΛnnlogn
69 31 rpne0d x1+∞logx0
70 67 68 25 69 divsubdird x1+∞n=1xΛnnlogxn=1xΛnnlognlogx=n=1xΛnnlogxlogxn=1xΛnnlognlogx
71 23 25 69 divcan4d x1+∞n=1xΛnnlogxlogx=n=1xΛnn
72 71 oveq1d x1+∞n=1xΛnnlogxlogxn=1xΛnnlognlogx=n=1xΛnnn=1xΛnnlognlogx
73 66 70 72 3eqtrd x1+∞n=1xΛnnlogxnlogx=n=1xΛnnn=1xΛnnlognlogx
74 73 oveq1d x1+∞n=1xΛnnlogxnlogxlogx2=n=1xΛnn-n=1xΛnnlognlogx-logx2
75 45 74 eqtr4d x1+∞n=1xΛnn-logx2-n=1xΛnnlognlogx=n=1xΛnnlogxnlogxlogx2
76 39 44 75 3eqtr3d x1+∞n=1xΛnn-logx-n=1xΛnnlognlogxlogx2=n=1xΛnnlogxnlogxlogx2
77 76 mpteq2dva x1+∞n=1xΛnn-logx-n=1xΛnnlognlogxlogx2=x1+∞n=1xΛnnlogxnlogxlogx2
78 vmalogdivsum2 x1+∞n=1xΛnnlogxnlogxlogx2𝑂1
79 77 78 eqeltrdi x1+∞n=1xΛnn-logx-n=1xΛnnlognlogxlogx2𝑂1
80 26 35 79 o1dif x1+∞n=1xΛnnlogx𝑂1x1+∞n=1xΛnnlognlogxlogx2𝑂1
81 15 80 mpbid x1+∞n=1xΛnnlognlogxlogx2𝑂1
82 81 mptru x1+∞n=1xΛnnlognlogxlogx2𝑂1