Metamath Proof Explorer


Theorem xpord3pred

Description: Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 31-Jan-2025)

Ref Expression
Hypothesis xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
Assertion xpord3pred XAYBZCPredUA×B×CXYZ=PredRAXX×PredSBYY×PredTCZZXYZ

Proof

Step Hyp Ref Expression
1 xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
2 oteq1 a=Xabc=Xbc
3 predeq3 abc=XbcPredUA×B×Cabc=PredUA×B×CXbc
4 2 3 syl a=XPredUA×B×Cabc=PredUA×B×CXbc
5 predeq3 a=XPredRAa=PredRAX
6 sneq a=Xa=X
7 5 6 uneq12d a=XPredRAaa=PredRAXX
8 7 xpeq1d a=XPredRAaa×PredSBbb=PredRAXX×PredSBbb
9 8 xpeq1d a=XPredRAaa×PredSBbb×PredTCcc=PredRAXX×PredSBbb×PredTCcc
10 2 sneqd a=Xabc=Xbc
11 9 10 difeq12d a=XPredRAaa×PredSBbb×PredTCccabc=PredRAXX×PredSBbb×PredTCccXbc
12 4 11 eqeq12d a=XPredUA×B×Cabc=PredRAaa×PredSBbb×PredTCccabcPredUA×B×CXbc=PredRAXX×PredSBbb×PredTCccXbc
13 oteq2 b=YXbc=XYc
14 predeq3 Xbc=XYcPredUA×B×CXbc=PredUA×B×CXYc
15 13 14 syl b=YPredUA×B×CXbc=PredUA×B×CXYc
16 predeq3 b=YPredSBb=PredSBY
17 sneq b=Yb=Y
18 16 17 uneq12d b=YPredSBbb=PredSBYY
19 18 xpeq2d b=YPredRAXX×PredSBbb=PredRAXX×PredSBYY
20 19 xpeq1d b=YPredRAXX×PredSBbb×PredTCcc=PredRAXX×PredSBYY×PredTCcc
21 13 sneqd b=YXbc=XYc
22 20 21 difeq12d b=YPredRAXX×PredSBbb×PredTCccXbc=PredRAXX×PredSBYY×PredTCccXYc
23 15 22 eqeq12d b=YPredUA×B×CXbc=PredRAXX×PredSBbb×PredTCccXbcPredUA×B×CXYc=PredRAXX×PredSBYY×PredTCccXYc
24 oteq3 c=ZXYc=XYZ
25 predeq3 XYc=XYZPredUA×B×CXYc=PredUA×B×CXYZ
26 24 25 syl c=ZPredUA×B×CXYc=PredUA×B×CXYZ
27 predeq3 c=ZPredTCc=PredTCZ
28 sneq c=Zc=Z
29 27 28 uneq12d c=ZPredTCcc=PredTCZZ
30 29 xpeq2d c=ZPredRAXX×PredSBYY×PredTCcc=PredRAXX×PredSBYY×PredTCZZ
31 24 sneqd c=ZXYc=XYZ
32 30 31 difeq12d c=ZPredRAXX×PredSBYY×PredTCccXYc=PredRAXX×PredSBYY×PredTCZZXYZ
33 26 32 eqeq12d c=ZPredUA×B×CXYc=PredRAXX×PredSBYY×PredTCccXYcPredUA×B×CXYZ=PredRAXX×PredSBYY×PredTCZZXYZ
34 el2xptp qA×B×CdAeBfCq=def
35 df-3an dAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfcdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfc
36 simplrl aAbBcCdAeBfCdA
37 simplrr aAbBcCdAeBfCeB
38 simpr aAbBcCdAeBfCfC
39 36 37 38 3jca aAbBcCdAeBfCdAeBfC
40 simpll aAbBcCdAeBfCaAbBcC
41 39 40 jca aAbBcCdAeBfCdAeBfCaAbBcC
42 41 biantrurd aAbBcCdAeBfCdRad=aeSbe=bfTcf=cdaebfcdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfc
43 36 biantrurd aAbBcCdAeBfCdRadAdRa
44 43 orbi1d aAbBcCdAeBfCdRad=adAdRad=a
45 37 biantrurd aAbBcCdAeBfCeSbeBeSb
46 45 orbi1d aAbBcCdAeBfCeSbe=beBeSbe=b
47 38 biantrurd aAbBcCdAeBfCfTcfCfTc
48 47 orbi1d aAbBcCdAeBfCfTcf=cfCfTcf=c
49 44 46 48 3anbi123d aAbBcCdAeBfCdRad=aeSbe=bfTcf=cdAdRad=aeBeSbe=bfCfTcf=c
50 49 anbi1d aAbBcCdAeBfCdRad=aeSbe=bfTcf=cdaebfcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
51 42 50 bitr3d aAbBcCdAeBfCdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
52 35 51 bitrid aAbBcCdAeBfCdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
53 breq1 q=defqUabcdefUabc
54 1 xpord3lem defUabcdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfc
55 53 54 bitrdi q=defqUabcdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfc
56 eleq1 q=defqPredRAaa×PredSBbb×PredTCccabcdefPredRAaa×PredSBbb×PredTCccabc
57 eldifsn defPredRAaa×PredSBbb×PredTCccabcdefPredRAaa×PredSBbb×PredTCccdefabc
58 otelxp defPredRAaa×PredSBbb×PredTCccdPredRAaaePredSBbbfPredTCcc
59 elun dPredRAaadPredRAada
60 vex dV
61 60 elpred aVdPredRAadAdRa
62 61 elv dPredRAadAdRa
63 velsn dad=a
64 62 63 orbi12i dPredRAadadAdRad=a
65 59 64 bitri dPredRAaadAdRad=a
66 elun ePredSBbbePredSBbeb
67 vex eV
68 67 elpred bVePredSBbeBeSb
69 68 elv ePredSBbeBeSb
70 velsn ebe=b
71 69 70 orbi12i ePredSBbebeBeSbe=b
72 66 71 bitri ePredSBbbeBeSbe=b
73 elun fPredTCccfPredTCcfc
74 vex fV
75 74 elpred cVfPredTCcfCfTc
76 75 elv fPredTCcfCfTc
77 velsn fcf=c
78 76 77 orbi12i fPredTCcfcfCfTcf=c
79 73 78 bitri fPredTCccfCfTcf=c
80 65 72 79 3anbi123i dPredRAaaePredSBbbfPredTCccdAdRad=aeBeSbe=bfCfTcf=c
81 58 80 bitri defPredRAaa×PredSBbb×PredTCccdAdRad=aeBeSbe=bfCfTcf=c
82 60 67 74 otthne defabcdaebfc
83 81 82 anbi12i defPredRAaa×PredSBbb×PredTCccdefabcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
84 57 83 bitri defPredRAaa×PredSBbb×PredTCccabcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
85 56 84 bitrdi q=defqPredRAaa×PredSBbb×PredTCccabcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
86 55 85 bibi12d q=defqUabcqPredRAaa×PredSBbb×PredTCccabcdAeBfCaAbBcCdRad=aeSbe=bfTcf=cdaebfcdAdRad=aeBeSbe=bfCfTcf=cdaebfc
87 52 86 syl5ibrcom aAbBcCdAeBfCq=defqUabcqPredRAaa×PredSBbb×PredTCccabc
88 87 rexlimdva aAbBcCdAeBfCq=defqUabcqPredRAaa×PredSBbb×PredTCccabc
89 88 rexlimdvva aAbBcCdAeBfCq=defqUabcqPredRAaa×PredSBbb×PredTCccabc
90 34 89 biimtrid aAbBcCqA×B×CqUabcqPredRAaa×PredSBbb×PredTCccabc
91 90 pm5.32d aAbBcCqA×B×CqUabcqA×B×CqPredRAaa×PredSBbb×PredTCccabc
92 otex abcV
93 vex qV
94 93 elpred abcVqPredUA×B×CabcqA×B×CqUabc
95 92 94 ax-mp qPredUA×B×CabcqA×B×CqUabc
96 elin qA×B×CPredRAaa×PredSBbb×PredTCccabcqA×B×CqPredRAaa×PredSBbb×PredTCccabc
97 91 95 96 3bitr4g aAbBcCqPredUA×B×CabcqA×B×CPredRAaa×PredSBbb×PredTCccabc
98 97 eqrdv aAbBcCPredUA×B×Cabc=A×B×CPredRAaa×PredSBbb×PredTCccabc
99 predss PredRAaA
100 99 a1i aAPredRAaA
101 snssi aAaA
102 100 101 unssd aAPredRAaaA
103 102 3ad2ant1 aAbBcCPredRAaaA
104 predss PredSBbB
105 104 a1i bBPredSBbB
106 snssi bBbB
107 105 106 unssd bBPredSBbbB
108 107 3ad2ant2 aAbBcCPredSBbbB
109 xpss12 PredRAaaAPredSBbbBPredRAaa×PredSBbbA×B
110 103 108 109 syl2anc aAbBcCPredRAaa×PredSBbbA×B
111 predss PredTCcC
112 111 a1i cCPredTCcC
113 snssi cCcC
114 112 113 unssd cCPredTCccC
115 114 3ad2ant3 aAbBcCPredTCccC
116 xpss12 PredRAaa×PredSBbbA×BPredTCccCPredRAaa×PredSBbb×PredTCccA×B×C
117 110 115 116 syl2anc aAbBcCPredRAaa×PredSBbb×PredTCccA×B×C
118 117 ssdifssd aAbBcCPredRAaa×PredSBbb×PredTCccabcA×B×C
119 sseqin2 PredRAaa×PredSBbb×PredTCccabcA×B×CA×B×CPredRAaa×PredSBbb×PredTCccabc=PredRAaa×PredSBbb×PredTCccabc
120 118 119 sylib aAbBcCA×B×CPredRAaa×PredSBbb×PredTCccabc=PredRAaa×PredSBbb×PredTCccabc
121 98 120 eqtrd aAbBcCPredUA×B×Cabc=PredRAaa×PredSBbb×PredTCccabc
122 12 23 33 121 vtocl3ga XAYBZCPredUA×B×CXYZ=PredRAXX×PredSBYY×PredTCZZXYZ