| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1otrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
f1otrkg.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
| 3 |
|
f1otrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
f1otrkg.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 5 |
|
f1otrkg.e |
⊢ 𝐸 = ( dist ‘ 𝐻 ) |
| 6 |
|
f1otrkg.j |
⊢ 𝐽 = ( Itv ‘ 𝐻 ) |
| 7 |
|
f1otrkg.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 8 |
|
f1otrkg.1 |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 9 |
|
f1otrkg.2 |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 10 |
|
f1otrg.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) |
| 11 |
|
f1otrg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 12 |
|
f1otrg.l |
⊢ ( 𝜑 → ( LineG ‘ 𝐻 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐽 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐽 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ) } ) ) |
| 13 |
10
|
elexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 14 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
|
f1of |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 19 |
17 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 21 |
17 20
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 22 |
1 2 3 14 19 21
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 24 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 25 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 26 |
1 2 3 4 5 6 23 24 25 18 20
|
f1otrgds |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐸 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 |
1 2 3 4 5 6 23 24 25 20 18
|
f1otrgds |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 𝐸 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ) |
| 28 |
22 26 27
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐸 𝑦 ) = ( 𝑦 𝐸 𝑥 ) ) |
| 29 |
28
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐸 𝑦 ) = ( 𝑦 𝐸 𝑥 ) ) |
| 30 |
|
f1of1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → 𝐹 : 𝐵 –1-1→ 𝑃 ) |
| 31 |
7 30
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝑃 ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝐹 : 𝐵 –1-1→ 𝑃 ) |
| 33 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝑥 ∈ 𝐵 ) |
| 34 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝑦 ∈ 𝐵 ) |
| 35 |
33 34
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 36 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝐺 ∈ TarskiG ) |
| 37 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 38 |
37 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 39 |
37 34
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 40 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝑧 ∈ 𝐵 ) |
| 41 |
37 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑃 ) |
| 42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) |
| 43 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 44 |
8
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 45 |
9
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 46 |
1 2 3 4 5 6 43 44 45 33 34
|
f1otrgds |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝑥 𝐸 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) |
| 47 |
1 2 3 4 5 6 43 44 45 40 40
|
f1otrgds |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝑧 𝐸 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 |
42 46 47
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) ) |
| 49 |
1 2 3 36 38 39 41 48
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 50 |
|
f1veqaeq |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝑃 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 51 |
50
|
imp |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝑃 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 52 |
32 35 49 51
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) ) → 𝑥 = 𝑦 ) |
| 53 |
52
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 54 |
53
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 55 |
29 54
|
jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐸 𝑦 ) = ( 𝑦 𝐸 𝑥 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 56 |
4 5 6
|
istrkgc |
⊢ ( 𝐻 ∈ TarskiGC ↔ ( 𝐻 ∈ V ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐸 𝑦 ) = ( 𝑦 𝐸 𝑥 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 𝐸 𝑦 ) = ( 𝑧 𝐸 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
| 57 |
13 55 56
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ TarskiGC ) |
| 58 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 59 |
58 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝐹 : 𝐵 –1-1→ 𝑃 ) |
| 60 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 61 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝐺 ∈ TarskiG ) |
| 62 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 63 |
21
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 64 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 65 |
8
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 66 |
9
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 67 |
18
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 68 |
20
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 69 |
1 2 3 4 5 6 58 65 66 67 67 68
|
f1otrgitv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 70 |
64 69
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 |
1 2 3 61 62 63 70
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 72 |
59 60 71 51
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) ) → 𝑥 = 𝑦 ) |
| 73 |
72
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 74 |
73
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 75 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → ◡ 𝐹 : 𝑃 –1-1-onto→ 𝐵 ) |
| 76 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝑃 ⟶ 𝐵 ) |
| 77 |
7 75 76
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑃 ⟶ 𝐵 ) |
| 78 |
77
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ◡ 𝐹 : 𝑃 ⟶ 𝐵 ) |
| 79 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑐 ∈ 𝑃 ) |
| 80 |
78 79
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
| 81 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ 𝑎 = ( ◡ 𝐹 ‘ 𝑐 ) ) → 𝑎 = ( ◡ 𝐹 ‘ 𝑐 ) ) |
| 82 |
81
|
eleq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ 𝑎 = ( ◡ 𝐹 ‘ 𝑐 ) ) → ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ↔ ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑢 𝐽 𝑦 ) ) ) |
| 83 |
81
|
eleq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ 𝑎 = ( ◡ 𝐹 ‘ 𝑐 ) ) → ( 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ↔ ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑣 𝐽 𝑥 ) ) ) |
| 84 |
82 83
|
anbi12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ 𝑎 = ( ◡ 𝐹 ‘ 𝑐 ) ) → ( ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑢 𝐽 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑣 𝐽 𝑥 ) ) ) ) |
| 85 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 86 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 87 |
86
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 88 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑐 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
| 89 |
88
|
eleq1d |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑐 ∈ 𝑃 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 90 |
87 79 89
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 91 |
85 90
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 92 |
24
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 93 |
92
|
ad4ant14 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 94 |
25
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 95 |
94
|
ad4ant14 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 96 |
|
simplr2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑢 ∈ 𝐵 ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑢 ∈ 𝐵 ) |
| 98 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 99 |
98
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑦 ∈ 𝐵 ) |
| 100 |
1 2 3 4 5 6 87 93 95 97 99 80
|
f1otrgitv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑢 𝐽 𝑦 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 101 |
91 100
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑢 𝐽 𝑦 ) ) |
| 102 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) |
| 103 |
88
|
eleq1d |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑐 ∈ 𝑃 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 104 |
87 79 103
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 105 |
102 104
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) |
| 106 |
|
simplr3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑣 ∈ 𝐵 ) |
| 107 |
106
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑣 ∈ 𝐵 ) |
| 108 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 109 |
108
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝑥 ∈ 𝐵 ) |
| 110 |
1 2 3 4 5 6 87 93 95 107 109 80
|
f1otrgitv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑣 𝐽 𝑥 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 111 |
105 110
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑣 𝐽 𝑥 ) ) |
| 112 |
101 111
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑢 𝐽 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑣 𝐽 𝑥 ) ) ) |
| 113 |
80 84 112
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) |
| 114 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝐺 ∈ TarskiG ) |
| 115 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 116 |
115 108
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 117 |
115 98
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 118 |
|
simplr1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 119 |
115 118
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑃 ) |
| 120 |
115 96
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑃 ) |
| 121 |
115 106
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑃 ) |
| 122 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 123 |
1 2 3 4 5 6 86 92 94 108 118 96
|
f1otrgitv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ↔ ( 𝐹 ‘ 𝑢 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 124 |
122 123
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) |
| 125 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) |
| 126 |
1 2 3 4 5 6 86 92 94 98 118 106
|
f1otrgitv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ↔ ( 𝐹 ‘ 𝑣 ) ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 127 |
125 126
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) |
| 128 |
1 2 3 114 116 117 119 120 121 124 127
|
axtgpasch |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ∃ 𝑐 ∈ 𝑃 ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑢 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑐 ∈ ( ( 𝐹 ‘ 𝑣 ) 𝐼 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 129 |
113 128
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) |
| 130 |
129
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) ) |
| 131 |
130
|
ralrimivvva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) ) |
| 132 |
131
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) ) |
| 133 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 134 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑐 ∈ 𝑃 ) |
| 135 |
133 134 88
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
| 136 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ 𝑃 → 𝐹 Fn 𝐵 ) |
| 137 |
133 15 136
|
3syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝐹 Fn 𝐵 ) |
| 138 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) |
| 139 |
138
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 140 |
139
|
elpwid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑠 ⊆ 𝐵 ) |
| 141 |
140
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑠 ⊆ 𝐵 ) |
| 142 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑥 ∈ 𝑠 ) |
| 143 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝑠 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑠 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑠 ) ) |
| 144 |
137 141 142 143
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑠 ) ) |
| 145 |
138
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 146 |
145
|
elpwid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ⊆ 𝐵 ) |
| 147 |
146
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ⊆ 𝐵 ) |
| 148 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝑡 ) |
| 149 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝑡 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑡 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 150 |
137 147 148 149
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 151 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) |
| 152 |
|
oveq1 |
⊢ ( 𝑒 = ( 𝐹 ‘ 𝑥 ) → ( 𝑒 𝐼 𝑓 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑓 ) ) |
| 153 |
152
|
eleq2d |
⊢ ( 𝑒 = ( 𝐹 ‘ 𝑥 ) → ( 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑓 ) ) ) |
| 154 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑓 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 155 |
154
|
eleq2d |
⊢ ( 𝑓 = ( 𝐹 ‘ 𝑦 ) → ( 𝑐 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑓 ) ↔ 𝑐 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 156 |
153 155
|
rspc2va |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑠 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑡 ) ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) → 𝑐 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 157 |
144 150 151 156
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑐 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 158 |
135 157
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) |
| 159 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 160 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → 𝜑 ) |
| 161 |
160 8
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 162 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝜑 ) |
| 163 |
162 9
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 164 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑥 ∈ 𝑠 ) |
| 165 |
140 164
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑥 ∈ 𝐵 ) |
| 166 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝑡 ) |
| 167 |
146 166
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝐵 ) |
| 168 |
77
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ◡ 𝐹 : 𝑃 ⟶ 𝐵 ) |
| 169 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑐 ∈ 𝑃 ) |
| 170 |
168 169
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
| 171 |
1 2 3 4 5 6 159 161 163 165 167 170
|
f1otrgitv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 172 |
171
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑐 ) ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 173 |
158 172
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) ∧ ( 𝑥 ∈ 𝑠 ∧ 𝑦 ∈ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 174 |
173
|
ralrimivva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) → ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 175 |
174
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) → ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 176 |
77
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) → ◡ 𝐹 : 𝑃 ⟶ 𝐵 ) |
| 177 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ 𝑃 ) |
| 178 |
176 177
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) → ( ◡ 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
| 179 |
|
eleq1 |
⊢ ( 𝑏 = ( ◡ 𝐹 ‘ 𝑐 ) → ( 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ↔ ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 180 |
179
|
2ralbidv |
⊢ ( 𝑏 = ( ◡ 𝐹 ‘ 𝑐 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 181 |
180
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 = ( ◡ 𝐹 ‘ 𝑐 ) ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 182 |
178 181
|
rspcedv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 183 |
182
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 ( ◡ 𝐹 ‘ 𝑐 ) ∈ ( 𝑥 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 184 |
175 183
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑐 ∈ 𝑃 ) ∧ ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 185 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → 𝐺 ∈ TarskiG ) |
| 186 |
|
imassrn |
⊢ ( 𝐹 “ 𝑠 ) ⊆ ran 𝐹 |
| 187 |
|
f1ofo |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → 𝐹 : 𝐵 –onto→ 𝑃 ) |
| 188 |
|
forn |
⊢ ( 𝐹 : 𝐵 –onto→ 𝑃 → ran 𝐹 = 𝑃 ) |
| 189 |
7 187 188
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = 𝑃 ) |
| 190 |
189
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ran 𝐹 = 𝑃 ) |
| 191 |
186 190
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑃 ) |
| 192 |
|
imassrn |
⊢ ( 𝐹 “ 𝑡 ) ⊆ ran 𝐹 |
| 193 |
192 190
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ( 𝐹 “ 𝑡 ) ⊆ 𝑃 ) |
| 194 |
16
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 195 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → 𝑎 ∈ 𝐵 ) |
| 196 |
194 195
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑃 ) |
| 197 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 198 |
|
ffn |
⊢ ( ◡ 𝐹 : 𝑃 ⟶ 𝐵 → ◡ 𝐹 Fn 𝑃 ) |
| 199 |
197 75 76 198
|
4syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ◡ 𝐹 Fn 𝑃 ) |
| 200 |
191
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑃 ) |
| 201 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) |
| 202 |
|
fnfvima |
⊢ ( ( ◡ 𝐹 Fn 𝑃 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑃 ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑠 ) ) ) |
| 203 |
199 200 201 202
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑠 ) ) ) |
| 204 |
197 30
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝐹 : 𝐵 –1-1→ 𝑃 ) |
| 205 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) |
| 206 |
205
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 207 |
206
|
elpwid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑠 ⊆ 𝐵 ) |
| 208 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝑃 ∧ 𝑠 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑠 ) ) = 𝑠 ) |
| 209 |
204 207 208
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑠 ) ) = 𝑠 ) |
| 210 |
203 209
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑠 ) |
| 211 |
193
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝐹 “ 𝑡 ) ⊆ 𝑃 ) |
| 212 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) |
| 213 |
|
fnfvima |
⊢ ( ( ◡ 𝐹 Fn 𝑃 ∧ ( 𝐹 “ 𝑡 ) ⊆ 𝑃 ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑡 ) ) ) |
| 214 |
199 211 212 213
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑡 ) ) ) |
| 215 |
205
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 216 |
215
|
elpwid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑡 ⊆ 𝐵 ) |
| 217 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝑃 ∧ 𝑡 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑡 ) ) = 𝑡 ) |
| 218 |
204 216 217
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑡 ) ) = 𝑡 ) |
| 219 |
214 218
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑡 ) |
| 220 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) |
| 221 |
|
eleq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝑢 ) → ( 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ↔ ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 𝑦 ) ) ) |
| 222 |
|
oveq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( 𝑎 𝐽 𝑦 ) = ( 𝑎 𝐽 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 223 |
222
|
eleq2d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑣 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 𝑦 ) ↔ ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 224 |
221 223
|
rspc2va |
⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑠 ∧ ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 225 |
210 219 220 224
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 226 |
|
simp-6l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → 𝜑 ) |
| 227 |
226 8
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 228 |
|
simp-6l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝜑 ) |
| 229 |
228 9
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 230 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑎 ∈ 𝐵 ) |
| 231 |
211 212
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑣 ∈ 𝑃 ) |
| 232 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑣 ∈ 𝑃 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 233 |
197 231 232
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 234 |
200 201
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑢 ∈ 𝑃 ) |
| 235 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑢 ∈ 𝑃 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
| 236 |
197 234 235
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝐵 ) |
| 237 |
1 2 3 4 5 6 197 227 229 230 233 236
|
f1otrgitv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) ∈ ( 𝑎 𝐽 ( ◡ 𝐹 ‘ 𝑣 ) ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 238 |
225 237
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 239 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑢 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 240 |
197 234 239
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 241 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑣 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 242 |
197 231 241
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 243 |
242
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝐼 𝑣 ) ) |
| 244 |
238 240 243
|
3eltr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑢 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 𝑣 ) ) |
| 245 |
244
|
3impa |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) ∧ 𝑢 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑣 ∈ ( 𝐹 “ 𝑡 ) ) → 𝑢 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 𝑣 ) ) |
| 246 |
1 2 3 185 191 193 196 245
|
axtgcont |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ∃ 𝑐 ∈ 𝑃 ∀ 𝑒 ∈ ( 𝐹 “ 𝑠 ) ∀ 𝑓 ∈ ( 𝐹 “ 𝑡 ) 𝑐 ∈ ( 𝑒 𝐼 𝑓 ) ) |
| 247 |
184 246
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 248 |
247
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 249 |
248
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) |
| 250 |
74 132 249
|
3jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 251 |
4 5 6
|
istrkgb |
⊢ ( 𝐻 ∈ TarskiGB ↔ ( 𝐻 ∈ V ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( 𝑢 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐽 𝑧 ) ) → ∃ 𝑎 ∈ 𝐵 ( 𝑎 ∈ ( 𝑢 𝐽 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐽 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐽 𝑦 ) → ∃ 𝑏 ∈ 𝐵 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐽 𝑦 ) ) ) ) ) |
| 252 |
13 250 251
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ TarskiGB ) |
| 253 |
57 252
|
elind |
⊢ ( 𝜑 → 𝐻 ∈ ( TarskiGC ∩ TarskiGB ) ) |
| 254 |
11
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝐺 ∈ TarskiG ) |
| 255 |
16
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 256 |
|
simp-9r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑥 ∈ 𝐵 ) |
| 257 |
255 256
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 258 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑦 ∈ 𝐵 ) |
| 259 |
255 258
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 260 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 261 |
255 260
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑃 ) |
| 262 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑎 ∈ 𝐵 ) |
| 263 |
255 262
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑃 ) |
| 264 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑏 ∈ 𝐵 ) |
| 265 |
255 264
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑃 ) |
| 266 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑐 ∈ 𝐵 ) |
| 267 |
255 266
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝑃 ) |
| 268 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑢 ∈ 𝐵 ) |
| 269 |
255 268
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑃 ) |
| 270 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑣 ∈ 𝐵 ) |
| 271 |
255 270
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑃 ) |
| 272 |
7
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 273 |
272 256
|
jca |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑥 ∈ 𝐵 ) ) |
| 274 |
|
simprl1 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑥 ≠ 𝑦 ) |
| 275 |
|
dff1o6 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ↔ ( 𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 276 |
275
|
simp3bi |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 277 |
276
|
r19.21bi |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 278 |
277
|
r19.21bi |
⊢ ( ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 279 |
278
|
necon3d |
⊢ ( ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 280 |
279
|
imp |
⊢ ( ( ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 281 |
273 258 274 280
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 282 |
|
simprl2 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 283 |
8
|
ex |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 284 |
283
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 285 |
284
|
imp |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 286 |
9
|
ex |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) ) |
| 287 |
286
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) ) |
| 288 |
287
|
imp |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 289 |
1 2 3 4 5 6 272 285 288 256 260 258
|
f1otrgitv |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 290 |
282 289
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ 𝑧 ) ) ) |
| 291 |
|
simprl3 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) |
| 292 |
1 2 3 4 5 6 272 285 288 262 266 264
|
f1otrgitv |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 293 |
291 292
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐼 ( 𝐹 ‘ 𝑐 ) ) ) |
| 294 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) |
| 295 |
294
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ) |
| 296 |
295
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ) |
| 297 |
1 2 3 4 5 6 272 285 288 256 258
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑥 𝐸 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) |
| 298 |
1 2 3 4 5 6 272 285 288 262 264
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑎 𝐸 𝑏 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 299 |
296 297 298
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 300 |
295
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) |
| 301 |
1 2 3 4 5 6 272 285 288 258 260
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑦 𝐸 𝑧 ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) ) |
| 302 |
1 2 3 4 5 6 272 285 288 264 266
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑏 𝐸 𝑐 ) = ( ( 𝐹 ‘ 𝑏 ) 𝐷 ( 𝐹 ‘ 𝑐 ) ) ) |
| 303 |
300 301 302
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑏 ) 𝐷 ( 𝐹 ‘ 𝑐 ) ) ) |
| 304 |
294
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) |
| 305 |
304
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ) |
| 306 |
1 2 3 4 5 6 272 285 288 256 268
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑥 𝐸 𝑢 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) ) |
| 307 |
1 2 3 4 5 6 272 285 288 262 270
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑎 𝐸 𝑣 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 308 |
305 306 307
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 309 |
304
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) |
| 310 |
1 2 3 4 5 6 272 285 288 258 268
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑦 𝐸 𝑢 ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) ) |
| 311 |
1 2 3 4 5 6 272 285 288 264 270
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑏 𝐸 𝑣 ) = ( ( 𝐹 ‘ 𝑏 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 312 |
309 310 311
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑏 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 313 |
1 2 3 254 257 259 261 263 265 267 269 271 281 290 293 299 303 308 312
|
axtg5seg |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 314 |
1 2 3 4 5 6 272 285 288 260 268
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) ) |
| 315 |
1 2 3 4 5 6 272 285 288 266 270
|
f1otrgds |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑐 𝐸 𝑣 ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑣 ) ) ) |
| 316 |
313 314 315
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) |
| 317 |
316
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 318 |
317
|
ralrimiva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 319 |
318
|
ralrimiva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 320 |
319
|
ralrimiva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 321 |
320
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 322 |
321
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 323 |
322
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 324 |
323
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 325 |
324
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ) |
| 326 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝜑 ) |
| 327 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑤 ∈ 𝑃 ) |
| 328 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ) |
| 329 |
326 7
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) |
| 330 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ 𝑤 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) = 𝑤 ) |
| 331 |
329 327 330
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) = 𝑤 ) |
| 332 |
331
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ) |
| 333 |
328 332
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) ) ) |
| 334 |
326 8
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑒 𝐸 𝑓 ) = ( ( 𝐹 ‘ 𝑒 ) 𝐷 ( 𝐹 ‘ 𝑓 ) ) ) |
| 335 |
326 9
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑒 𝐽 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑒 ) 𝐼 ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 336 |
18
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑥 ∈ 𝐵 ) |
| 337 |
77
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑃 ) → ( ◡ 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 338 |
326 327 337
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 339 |
20
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑦 ∈ 𝐵 ) |
| 340 |
1 2 3 4 5 6 329 334 335 336 338 339
|
f1otrgitv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 341 |
333 340
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ) |
| 342 |
1 2 3 4 5 6 329 334 335 339 338
|
f1otrgds |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) ) ) |
| 343 |
331
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) ) |
| 344 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 345 |
342 343 344
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 346 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 347 |
346
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑎 ∈ 𝐵 ) |
| 348 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 349 |
348
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝑏 ∈ 𝐵 ) |
| 350 |
1 2 3 4 5 6 329 334 335 347 349
|
f1otrgds |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝑎 𝐸 𝑏 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 351 |
345 350
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 352 |
|
oveq2 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) → ( 𝑥 𝐽 𝑧 ) = ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ) |
| 353 |
352
|
eleq2d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) → ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ) ) |
| 354 |
|
oveq2 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) → ( 𝑦 𝐸 𝑧 ) = ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) ) |
| 355 |
354
|
eqeq1d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) → ( ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ↔ ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 356 |
353 355
|
anbi12d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) → ( ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ↔ ( 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ∧ ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) ) ) |
| 357 |
356
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑃 ) ∧ 𝑧 = ( ◡ 𝐹 ‘ 𝑤 ) ) → ( ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ↔ ( 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ∧ ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) ) ) |
| 358 |
337 357
|
rspcedv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑃 ) → ( ( 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ∧ ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) ) |
| 359 |
358
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑃 ) ∧ ( 𝑦 ∈ ( 𝑥 𝐽 ( ◡ 𝐹 ‘ 𝑤 ) ) ∧ ( 𝑦 𝐸 ( ◡ 𝐹 ‘ 𝑤 ) ) = ( 𝑎 𝐸 𝑏 ) ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 360 |
326 327 341 351 359
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝑃 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 361 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 362 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) |
| 363 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) |
| 364 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝑃 ) |
| 365 |
364 346
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑃 ) |
| 366 |
364 348
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑃 ) |
| 367 |
1 2 3 361 362 363 365 366
|
axtgsegcon |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝑃 ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐼 𝑤 ) ∧ ( ( 𝐹 ‘ 𝑦 ) 𝐷 𝑤 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 368 |
360 367
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 369 |
368
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 370 |
369
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) |
| 371 |
13 325 370
|
jca32 |
⊢ ( 𝜑 → ( 𝐻 ∈ V ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) ) ) |
| 372 |
4 5 6
|
istrkgcb |
⊢ ( 𝐻 ∈ TarskiGCB ↔ ( 𝐻 ∈ V ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝐽 𝑐 ) ) ∧ ( ( ( 𝑥 𝐸 𝑦 ) = ( 𝑎 𝐸 𝑏 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑏 𝐸 𝑐 ) ) ∧ ( ( 𝑥 𝐸 𝑢 ) = ( 𝑎 𝐸 𝑣 ) ∧ ( 𝑦 𝐸 𝑢 ) = ( 𝑏 𝐸 𝑣 ) ) ) ) → ( 𝑧 𝐸 𝑢 ) = ( 𝑐 𝐸 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ∧ ( 𝑦 𝐸 𝑧 ) = ( 𝑎 𝐸 𝑏 ) ) ) ) ) |
| 373 |
371 372
|
sylibr |
⊢ ( 𝜑 → 𝐻 ∈ TarskiGCB ) |
| 374 |
4 5 6
|
istrkgl |
⊢ ( 𝐻 ∈ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ↔ ( 𝐻 ∈ V ∧ ( LineG ‘ 𝐻 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐽 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐽 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐽 𝑧 ) ) } ) ) ) |
| 375 |
13 12 374
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) |
| 376 |
373 375
|
elind |
⊢ ( 𝜑 → 𝐻 ∈ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) |
| 377 |
253 376
|
elind |
⊢ ( 𝜑 → 𝐻 ∈ ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ) |
| 378 |
|
df-trkg |
⊢ TarskiG = ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) |
| 379 |
377 378
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐻 ∈ TarskiG ) |