Metamath Proof Explorer


Theorem f1otrg

Description: A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses f1otrkg.p P=BaseG
f1otrkg.d D=distG
f1otrkg.i I=ItvG
f1otrkg.b B=BaseH
f1otrkg.e E=distH
f1otrkg.j J=ItvH
f1otrkg.f φF:B1-1 ontoP
f1otrkg.1 φeBfBeEf=FeDFf
f1otrkg.2 φeBfBgBgeJfFgFeIFf
f1otrg.h φHV
f1otrg.g φG𝒢Tarski
f1otrg.l φLine𝒢H=xB,yBxzB|zxJyxzJyyxJz
Assertion f1otrg φH𝒢Tarski

Proof

Step Hyp Ref Expression
1 f1otrkg.p P=BaseG
2 f1otrkg.d D=distG
3 f1otrkg.i I=ItvG
4 f1otrkg.b B=BaseH
5 f1otrkg.e E=distH
6 f1otrkg.j J=ItvH
7 f1otrkg.f φF:B1-1 ontoP
8 f1otrkg.1 φeBfBeEf=FeDFf
9 f1otrkg.2 φeBfBgBgeJfFgFeIFf
10 f1otrg.h φHV
11 f1otrg.g φG𝒢Tarski
12 f1otrg.l φLine𝒢H=xB,yBxzB|zxJyxzJyyxJz
13 10 elexd φHV
14 11 adantr φxByBG𝒢Tarski
15 f1of F:B1-1 ontoPF:BP
16 7 15 syl φF:BP
17 16 adantr φxByBF:BP
18 simprl φxByBxB
19 17 18 ffvelrnd φxByBFxP
20 simprr φxByByB
21 17 20 ffvelrnd φxByBFyP
22 1 2 3 14 19 21 axtgcgrrflx φxByBFxDFy=FyDFx
23 7 adantr φxByBF:B1-1 ontoP
24 8 adantlr φxByBeBfBeEf=FeDFf
25 9 adantlr φxByBeBfBgBgeJfFgFeIFf
26 1 2 3 4 5 6 23 24 25 18 20 f1otrgds φxByBxEy=FxDFy
27 1 2 3 4 5 6 23 24 25 20 18 f1otrgds φxByByEx=FyDFx
28 22 26 27 3eqtr4d φxByBxEy=yEx
29 28 ralrimivva φxByBxEy=yEx
30 f1of1 F:B1-1 ontoPF:B1-1P
31 7 30 syl φF:B1-1P
32 31 3ad2ant1 φxByBzBxEy=zEzF:B1-1P
33 simp21 φxByBzBxEy=zEzxB
34 simp22 φxByBzBxEy=zEzyB
35 33 34 jca φxByBzBxEy=zEzxByB
36 11 3ad2ant1 φxByBzBxEy=zEzG𝒢Tarski
37 16 3ad2ant1 φxByBzBxEy=zEzF:BP
38 37 33 ffvelrnd φxByBzBxEy=zEzFxP
39 37 34 ffvelrnd φxByBzBxEy=zEzFyP
40 simp23 φxByBzBxEy=zEzzB
41 37 40 ffvelrnd φxByBzBxEy=zEzFzP
42 simp3 φxByBzBxEy=zEzxEy=zEz
43 7 3ad2ant1 φxByBzBxEy=zEzF:B1-1 ontoP
44 8 3ad2antl1 φxByBzBxEy=zEzeBfBeEf=FeDFf
45 9 3ad2antl1 φxByBzBxEy=zEzeBfBgBgeJfFgFeIFf
46 1 2 3 4 5 6 43 44 45 33 34 f1otrgds φxByBzBxEy=zEzxEy=FxDFy
47 1 2 3 4 5 6 43 44 45 40 40 f1otrgds φxByBzBxEy=zEzzEz=FzDFz
48 42 46 47 3eqtr3d φxByBzBxEy=zEzFxDFy=FzDFz
49 1 2 3 36 38 39 41 48 axtgcgrid φxByBzBxEy=zEzFx=Fy
50 f1veqaeq F:B1-1PxByBFx=Fyx=y
51 50 imp F:B1-1PxByBFx=Fyx=y
52 32 35 49 51 syl21anc φxByBzBxEy=zEzx=y
53 52 3expia φxByBzBxEy=zEzx=y
54 53 ralrimivvva φxByBzBxEy=zEzx=y
55 29 54 jca φxByBxEy=yExxByBzBxEy=zEzx=y
56 4 5 6 istrkgc H𝒢TarskiCHVxByBxEy=yExxByBzBxEy=zEzx=y
57 13 55 56 sylanbrc φH𝒢TarskiC
58 7 3ad2ant1 φxByByxJxF:B1-1 ontoP
59 58 30 syl φxByByxJxF:B1-1P
60 simp2 φxByByxJxxByB
61 11 3ad2ant1 φxByByxJxG𝒢Tarski
62 19 3adant3 φxByByxJxFxP
63 21 3adant3 φxByByxJxFyP
64 simp3 φxByByxJxyxJx
65 8 3ad2antl1 φxByByxJxeBfBeEf=FeDFf
66 9 3ad2antl1 φxByByxJxeBfBgBgeJfFgFeIFf
67 18 3adant3 φxByByxJxxB
68 20 3adant3 φxByByxJxyB
69 1 2 3 4 5 6 58 65 66 67 67 68 f1otrgitv φxByByxJxyxJxFyFxIFx
70 64 69 mpbid φxByByxJxFyFxIFx
71 1 2 3 61 62 63 70 axtgbtwnid φxByByxJxFx=Fy
72 59 60 71 51 syl21anc φxByByxJxx=y
73 72 3expia φxByByxJxx=y
74 73 ralrimivva φxByByxJxx=y
75 f1ocnv F:B1-1 ontoPF-1:P1-1 ontoB
76 f1of F-1:P1-1 ontoBF-1:PB
77 7 75 76 3syl φF-1:PB
78 77 ad5antr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1:PB
79 simplr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxcP
80 78 79 ffvelrnd φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cB
81 simpr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxa=F-1ca=F-1c
82 81 eleq1d φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxa=F-1cauJyF-1cuJy
83 81 eleq1d φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxa=F-1cavJxF-1cvJx
84 82 83 anbi12d φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxa=F-1cauJyavJxF-1cuJyF-1cvJx
85 simprl φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxcFuIFy
86 23 ad2antrr φxByBzBuBvBuxJzvyJzF:B1-1 ontoP
87 86 ad2antrr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF:B1-1 ontoP
88 f1ocnvfv2 F:B1-1 ontoPcPFF-1c=c
89 88 eleq1d F:B1-1 ontoPcPFF-1cFuIFycFuIFy
90 87 79 89 syl2anc φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxFF-1cFuIFycFuIFy
91 85 90 mpbird φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxFF-1cFuIFy
92 24 ad4ant14 φxByBzBuBvBuxJzvyJzeBfBeEf=FeDFf
93 92 ad4ant14 φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxeBfBeEf=FeDFf
94 25 ad4ant14 φxByBzBuBvBuxJzvyJzeBfBgBgeJfFgFeIFf
95 94 ad4ant14 φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxeBfBgBgeJfFgFeIFf
96 simplr2 φxByBzBuBvBuxJzvyJzuB
97 96 ad2antrr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxuB
98 20 ad2antrr φxByBzBuBvBuxJzvyJzyB
99 98 ad2antrr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxyB
100 1 2 3 4 5 6 87 93 95 97 99 80 f1otrgitv φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cuJyFF-1cFuIFy
101 91 100 mpbird φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cuJy
102 simprr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxcFvIFx
103 88 eleq1d F:B1-1 ontoPcPFF-1cFvIFxcFvIFx
104 87 79 103 syl2anc φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxFF-1cFvIFxcFvIFx
105 102 104 mpbird φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxFF-1cFvIFx
106 simplr3 φxByBzBuBvBuxJzvyJzvB
107 106 ad2antrr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxvB
108 18 ad2antrr φxByBzBuBvBuxJzvyJzxB
109 108 ad2antrr φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxxB
110 1 2 3 4 5 6 87 93 95 107 109 80 f1otrgitv φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cvJxFF-1cFvIFx
111 105 110 mpbird φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cvJx
112 101 111 jca φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxF-1cuJyF-1cvJx
113 80 84 112 rspcedvd φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFxaBauJyavJx
114 14 ad2antrr φxByBzBuBvBuxJzvyJzG𝒢Tarski
115 17 ad2antrr φxByBzBuBvBuxJzvyJzF:BP
116 115 108 ffvelrnd φxByBzBuBvBuxJzvyJzFxP
117 115 98 ffvelrnd φxByBzBuBvBuxJzvyJzFyP
118 simplr1 φxByBzBuBvBuxJzvyJzzB
119 115 118 ffvelrnd φxByBzBuBvBuxJzvyJzFzP
120 115 96 ffvelrnd φxByBzBuBvBuxJzvyJzFuP
121 115 106 ffvelrnd φxByBzBuBvBuxJzvyJzFvP
122 simprl φxByBzBuBvBuxJzvyJzuxJz
123 1 2 3 4 5 6 86 92 94 108 118 96 f1otrgitv φxByBzBuBvBuxJzvyJzuxJzFuFxIFz
124 122 123 mpbid φxByBzBuBvBuxJzvyJzFuFxIFz
125 simprr φxByBzBuBvBuxJzvyJzvyJz
126 1 2 3 4 5 6 86 92 94 98 118 106 f1otrgitv φxByBzBuBvBuxJzvyJzvyJzFvFyIFz
127 125 126 mpbid φxByBzBuBvBuxJzvyJzFvFyIFz
128 1 2 3 114 116 117 119 120 121 124 127 axtgpasch φxByBzBuBvBuxJzvyJzcPcFuIFycFvIFx
129 113 128 r19.29a φxByBzBuBvBuxJzvyJzaBauJyavJx
130 129 ex φxByBzBuBvBuxJzvyJzaBauJyavJx
131 130 ralrimivvva φxByBzBuBvBuxJzvyJzaBauJyavJx
132 131 ralrimivva φxByBzBuBvBuxJzvyJzaBauJyavJx
133 7 ad5antr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytF:B1-1 ontoP
134 simpllr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytcP
135 133 134 88 syl2anc φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytFF-1c=c
136 ffn F:BPFFnB
137 133 15 136 3syl φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytFFnB
138 simp-4r φs𝒫Bt𝒫BaBcPxsyts𝒫Bt𝒫B
139 138 simpld φs𝒫Bt𝒫BaBcPxsyts𝒫B
140 139 elpwid φs𝒫Bt𝒫BaBcPxsytsB
141 140 adantlr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytsB
142 simprl φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytxs
143 fnfvima FFnBsBxsFxFs
144 137 141 142 143 syl3anc φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytFxFs
145 138 simprd φs𝒫Bt𝒫BaBcPxsytt𝒫B
146 145 elpwid φs𝒫Bt𝒫BaBcPxsyttB
147 146 adantlr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsyttB
148 simprr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytyt
149 fnfvima FFnBtBytFyFt
150 137 147 148 149 syl3anc φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytFyFt
151 simplr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsyteFsfFtceIf
152 oveq1 e=FxeIf=FxIf
153 152 eleq2d e=FxceIfcFxIf
154 oveq2 f=FyFxIf=FxIFy
155 154 eleq2d f=FycFxIfcFxIFy
156 153 155 rspc2va FxFsFyFteFsfFtceIfcFxIFy
157 144 150 151 156 syl21anc φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytcFxIFy
158 135 157 eqeltrd φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytFF-1cFxIFy
159 7 ad4antr φs𝒫Bt𝒫BaBcPxsytF:B1-1 ontoP
160 simp-5l φs𝒫Bt𝒫BaBcPxsyteBfBφ
161 160 8 sylancom φs𝒫Bt𝒫BaBcPxsyteBfBeEf=FeDFf
162 simp-5l φs𝒫Bt𝒫BaBcPxsyteBfBgBφ
163 162 9 sylancom φs𝒫Bt𝒫BaBcPxsyteBfBgBgeJfFgFeIFf
164 simprl φs𝒫Bt𝒫BaBcPxsytxs
165 140 164 sseldd φs𝒫Bt𝒫BaBcPxsytxB
166 simprr φs𝒫Bt𝒫BaBcPxsytyt
167 146 166 sseldd φs𝒫Bt𝒫BaBcPxsytyB
168 77 ad4antr φs𝒫Bt𝒫BaBcPxsytF-1:PB
169 simplr φs𝒫Bt𝒫BaBcPxsytcP
170 168 169 ffvelrnd φs𝒫Bt𝒫BaBcPxsytF-1cB
171 1 2 3 4 5 6 159 161 163 165 167 170 f1otrgitv φs𝒫Bt𝒫BaBcPxsytF-1cxJyFF-1cFxIFy
172 171 adantlr φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytF-1cxJyFF-1cFxIFy
173 158 172 mpbird φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytF-1cxJy
174 173 ralrimivva φs𝒫Bt𝒫BaBcPeFsfFtceIfxsytF-1cxJy
175 174 adantllr φs𝒫Bt𝒫BaBxsytxaJycPeFsfFtceIfxsytF-1cxJy
176 77 ad4antr φs𝒫Bt𝒫BaBxsytxaJycPF-1:PB
177 simpr φs𝒫Bt𝒫BaBxsytxaJycPcP
178 176 177 ffvelrnd φs𝒫Bt𝒫BaBxsytxaJycPF-1cB
179 eleq1 b=F-1cbxJyF-1cxJy
180 179 2ralbidv b=F-1cxsytbxJyxsytF-1cxJy
181 180 adantl φs𝒫Bt𝒫BaBxsytxaJycPb=F-1cxsytbxJyxsytF-1cxJy
182 178 181 rspcedv φs𝒫Bt𝒫BaBxsytxaJycPxsytF-1cxJybBxsytbxJy
183 182 adantr φs𝒫Bt𝒫BaBxsytxaJycPeFsfFtceIfxsytF-1cxJybBxsytbxJy
184 175 183 mpd φs𝒫Bt𝒫BaBxsytxaJycPeFsfFtceIfbBxsytbxJy
185 11 ad3antrrr φs𝒫Bt𝒫BaBxsytxaJyG𝒢Tarski
186 imassrn FsranF
187 f1ofo F:B1-1 ontoPF:BontoP
188 forn F:BontoPranF=P
189 7 187 188 3syl φranF=P
190 189 ad3antrrr φs𝒫Bt𝒫BaBxsytxaJyranF=P
191 186 190 sseqtrid φs𝒫Bt𝒫BaBxsytxaJyFsP
192 imassrn FtranF
193 192 190 sseqtrid φs𝒫Bt𝒫BaBxsytxaJyFtP
194 16 ad3antrrr φs𝒫Bt𝒫BaBxsytxaJyF:BP
195 simplr φs𝒫Bt𝒫BaBxsytxaJyaB
196 194 195 ffvelrnd φs𝒫Bt𝒫BaBxsytxaJyFaP
197 7 ad5antr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF:B1-1 ontoP
198 ffn F-1:PBF-1FnP
199 197 75 76 198 4syl φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1FnP
200 191 ad2antrr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFsP
201 simplr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtuFs
202 fnfvima F-1FnPFsPuFsF-1uF-1Fs
203 199 200 201 202 syl3anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1uF-1Fs
204 197 30 syl φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF:B1-1P
205 simp-5r φs𝒫Bt𝒫BaBxsytxaJyuFsvFts𝒫Bt𝒫B
206 205 simpld φs𝒫Bt𝒫BaBxsytxaJyuFsvFts𝒫B
207 206 elpwid φs𝒫Bt𝒫BaBxsytxaJyuFsvFtsB
208 f1imacnv F:B1-1PsBF-1Fs=s
209 204 207 208 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1Fs=s
210 203 209 eleqtrd φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1us
211 193 ad2antrr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFtP
212 simpr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtvFt
213 fnfvima F-1FnPFtPvFtF-1vF-1Ft
214 199 211 212 213 syl3anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1vF-1Ft
215 205 simprd φs𝒫Bt𝒫BaBxsytxaJyuFsvFtt𝒫B
216 215 elpwid φs𝒫Bt𝒫BaBxsytxaJyuFsvFttB
217 f1imacnv F:B1-1PtBF-1Ft=t
218 204 216 217 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1Ft=t
219 214 218 eleqtrd φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1vt
220 simpllr φs𝒫Bt𝒫BaBxsytxaJyuFsvFtxsytxaJy
221 eleq1 x=F-1uxaJyF-1uaJy
222 oveq2 y=F-1vaJy=aJF-1v
223 222 eleq2d y=F-1vF-1uaJyF-1uaJF-1v
224 221 223 rspc2va F-1usF-1vtxsytxaJyF-1uaJF-1v
225 210 219 220 224 syl21anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1uaJF-1v
226 simp-6l φs𝒫Bt𝒫BaBxsytxaJyuFsvFteBfBφ
227 226 8 sylancom φs𝒫Bt𝒫BaBxsytxaJyuFsvFteBfBeEf=FeDFf
228 simp-6l φs𝒫Bt𝒫BaBxsytxaJyuFsvFteBfBgBφ
229 228 9 sylancom φs𝒫Bt𝒫BaBxsytxaJyuFsvFteBfBgBgeJfFgFeIFf
230 simp-4r φs𝒫Bt𝒫BaBxsytxaJyuFsvFtaB
231 211 212 sseldd φs𝒫Bt𝒫BaBxsytxaJyuFsvFtvP
232 f1ocnvdm F:B1-1 ontoPvPF-1vB
233 197 231 232 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1vB
234 200 201 sseldd φs𝒫Bt𝒫BaBxsytxaJyuFsvFtuP
235 f1ocnvdm F:B1-1 ontoPuPF-1uB
236 197 234 235 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1uB
237 1 2 3 4 5 6 197 227 229 230 233 236 f1otrgitv φs𝒫Bt𝒫BaBxsytxaJyuFsvFtF-1uaJF-1vFF-1uFaIFF-1v
238 225 237 mpbid φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFF-1uFaIFF-1v
239 f1ocnvfv2 F:B1-1 ontoPuPFF-1u=u
240 197 234 239 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFF-1u=u
241 f1ocnvfv2 F:B1-1 ontoPvPFF-1v=v
242 197 231 241 syl2anc φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFF-1v=v
243 242 oveq2d φs𝒫Bt𝒫BaBxsytxaJyuFsvFtFaIFF-1v=FaIv
244 238 240 243 3eltr3d φs𝒫Bt𝒫BaBxsytxaJyuFsvFtuFaIv
245 244 3impa φs𝒫Bt𝒫BaBxsytxaJyuFsvFtuFaIv
246 1 2 3 185 191 193 196 245 axtgcont φs𝒫Bt𝒫BaBxsytxaJycPeFsfFtceIf
247 184 246 r19.29a φs𝒫Bt𝒫BaBxsytxaJybBxsytbxJy
248 247 rexlimdva2 φs𝒫Bt𝒫BaBxsytxaJybBxsytbxJy
249 248 ralrimivva φs𝒫Bt𝒫BaBxsytxaJybBxsytbxJy
250 74 132 249 3jca φxByByxJxx=yxByBzBuBvBuxJzvyJzaBauJyavJxs𝒫Bt𝒫BaBxsytxaJybBxsytbxJy
251 4 5 6 istrkgb H𝒢TarskiBHVxByByxJxx=yxByBzBuBvBuxJzvyJzaBauJyavJxs𝒫Bt𝒫BaBxsytxaJybBxsytbxJy
252 13 250 251 sylanbrc φH𝒢TarskiB
253 57 252 elind φH𝒢TarskiC𝒢TarskiB
254 11 ad9antr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvG𝒢Tarski
255 16 ad9antr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvF:BP
256 simp-9r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxB
257 255 256 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFxP
258 simp-8r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyB
259 255 258 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFyP
260 simp-7r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzB
261 255 260 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFzP
262 simp-5r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvaB
263 255 262 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFaP
264 simp-4r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvbB
265 255 264 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFbP
266 simpllr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvcB
267 255 266 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFcP
268 simp-6r φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvuB
269 255 268 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFuP
270 simplr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvvB
271 255 270 ffvelrnd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFvP
272 7 ad9antr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvF:B1-1 ontoP
273 272 256 jca φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvF:B1-1 ontoPxB
274 simprl1 φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxy
275 dff1o6 F:B1-1 ontoPFFnBranF=PxByBFx=Fyx=y
276 275 simp3bi F:B1-1 ontoPxByBFx=Fyx=y
277 276 r19.21bi F:B1-1 ontoPxByBFx=Fyx=y
278 277 r19.21bi F:B1-1 ontoPxByBFx=Fyx=y
279 278 necon3d F:B1-1 ontoPxByBxyFxFy
280 279 imp F:B1-1 ontoPxByBxyFxFy
281 273 258 274 280 syl21anc φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFxFy
282 simprl2 φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyxJz
283 8 ex φeBfBeEf=FeDFf
284 283 ad9antr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEveBfBeEf=FeDFf
285 284 imp φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEveBfBeEf=FeDFf
286 9 ex φeBfBgBgeJfFgFeIFf
287 286 ad9antr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEveBfBgBgeJfFgFeIFf
288 287 imp φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEveBfBgBgeJfFgFeIFf
289 1 2 3 4 5 6 272 285 288 256 260 258 f1otrgitv φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyxJzFyFxIFz
290 282 289 mpbid φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFyFxIFz
291 simprl3 φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvbaJc
292 1 2 3 4 5 6 272 285 288 262 266 264 f1otrgitv φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvbaJcFbFaIFc
293 291 292 mpbid φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFbFaIFc
294 simprr φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEy=aEbyEz=bEcxEu=aEvyEu=bEv
295 294 simpld φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEy=aEbyEz=bEc
296 295 simpld φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEy=aEb
297 1 2 3 4 5 6 272 285 288 256 258 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEy=FxDFy
298 1 2 3 4 5 6 272 285 288 262 264 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvaEb=FaDFb
299 296 297 298 3eqtr3d φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFxDFy=FaDFb
300 295 simprd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyEz=bEc
301 1 2 3 4 5 6 272 285 288 258 260 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyEz=FyDFz
302 1 2 3 4 5 6 272 285 288 264 266 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvbEc=FbDFc
303 300 301 302 3eqtr3d φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFyDFz=FbDFc
304 294 simprd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEu=aEvyEu=bEv
305 304 simpld φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEu=aEv
306 1 2 3 4 5 6 272 285 288 256 268 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvxEu=FxDFu
307 1 2 3 4 5 6 272 285 288 262 270 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvaEv=FaDFv
308 305 306 307 3eqtr3d φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFxDFu=FaDFv
309 304 simprd φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyEu=bEv
310 1 2 3 4 5 6 272 285 288 258 268 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvyEu=FyDFu
311 1 2 3 4 5 6 272 285 288 264 270 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvbEv=FbDFv
312 309 310 311 3eqtr3d φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFyDFu=FbDFv
313 1 2 3 254 257 259 261 263 265 267 269 271 281 290 293 299 303 308 312 axtg5seg φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvFzDFu=FcDFv
314 1 2 3 4 5 6 272 285 288 260 268 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=FzDFu
315 1 2 3 4 5 6 272 285 288 266 270 f1otrgds φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvcEv=FcDFv
316 313 314 315 3eqtr4d φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
317 316 ex φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
318 317 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
319 318 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
320 319 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
321 320 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
322 321 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
323 322 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
324 323 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
325 324 ralrimiva φxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEv
326 simp-4l φxByBaBbBwPFyFxIwFyDw=FaDFbφ
327 simplr φxByBaBbBwPFyFxIwFyDw=FaDFbwP
328 simprl φxByBaBbBwPFyFxIwFyDw=FaDFbFyFxIw
329 326 7 syl φxByBaBbBwPFyFxIwFyDw=FaDFbF:B1-1 ontoP
330 f1ocnvfv2 F:B1-1 ontoPwPFF-1w=w
331 329 327 330 syl2anc φxByBaBbBwPFyFxIwFyDw=FaDFbFF-1w=w
332 331 oveq2d φxByBaBbBwPFyFxIwFyDw=FaDFbFxIFF-1w=FxIw
333 328 332 eleqtrrd φxByBaBbBwPFyFxIwFyDw=FaDFbFyFxIFF-1w
334 326 8 sylan φxByBaBbBwPFyFxIwFyDw=FaDFbeBfBeEf=FeDFf
335 326 9 sylan φxByBaBbBwPFyFxIwFyDw=FaDFbeBfBgBgeJfFgFeIFf
336 18 ad3antrrr φxByBaBbBwPFyFxIwFyDw=FaDFbxB
337 77 ffvelrnda φwPF-1wB
338 326 327 337 syl2anc φxByBaBbBwPFyFxIwFyDw=FaDFbF-1wB
339 20 ad3antrrr φxByBaBbBwPFyFxIwFyDw=FaDFbyB
340 1 2 3 4 5 6 329 334 335 336 338 339 f1otrgitv φxByBaBbBwPFyFxIwFyDw=FaDFbyxJF-1wFyFxIFF-1w
341 333 340 mpbird φxByBaBbBwPFyFxIwFyDw=FaDFbyxJF-1w
342 1 2 3 4 5 6 329 334 335 339 338 f1otrgds φxByBaBbBwPFyFxIwFyDw=FaDFbyEF-1w=FyDFF-1w
343 331 oveq2d φxByBaBbBwPFyFxIwFyDw=FaDFbFyDFF-1w=FyDw
344 simprr φxByBaBbBwPFyFxIwFyDw=FaDFbFyDw=FaDFb
345 342 343 344 3eqtrd φxByBaBbBwPFyFxIwFyDw=FaDFbyEF-1w=FaDFb
346 simprl φxByBaBbBaB
347 346 ad2antrr φxByBaBbBwPFyFxIwFyDw=FaDFbaB
348 simprr φxByBaBbBbB
349 348 ad2antrr φxByBaBbBwPFyFxIwFyDw=FaDFbbB
350 1 2 3 4 5 6 329 334 335 347 349 f1otrgds φxByBaBbBwPFyFxIwFyDw=FaDFbaEb=FaDFb
351 345 350 eqtr4d φxByBaBbBwPFyFxIwFyDw=FaDFbyEF-1w=aEb
352 oveq2 z=F-1wxJz=xJF-1w
353 352 eleq2d z=F-1wyxJzyxJF-1w
354 oveq2 z=F-1wyEz=yEF-1w
355 354 eqeq1d z=F-1wyEz=aEbyEF-1w=aEb
356 353 355 anbi12d z=F-1wyxJzyEz=aEbyxJF-1wyEF-1w=aEb
357 356 adantl φwPz=F-1wyxJzyEz=aEbyxJF-1wyEF-1w=aEb
358 337 357 rspcedv φwPyxJF-1wyEF-1w=aEbzByxJzyEz=aEb
359 358 imp φwPyxJF-1wyEF-1w=aEbzByxJzyEz=aEb
360 326 327 341 351 359 syl22anc φxByBaBbBwPFyFxIwFyDw=FaDFbzByxJzyEz=aEb
361 14 adantr φxByBaBbBG𝒢Tarski
362 19 adantr φxByBaBbBFxP
363 21 adantr φxByBaBbBFyP
364 17 adantr φxByBaBbBF:BP
365 364 346 ffvelrnd φxByBaBbBFaP
366 364 348 ffvelrnd φxByBaBbBFbP
367 1 2 3 361 362 363 365 366 axtgsegcon φxByBaBbBwPFyFxIwFyDw=FaDFb
368 360 367 r19.29a φxByBaBbBzByxJzyEz=aEb
369 368 ralrimivva φxByBaBbBzByxJzyEz=aEb
370 369 ralrimivva φxByBaBbBzByxJzyEz=aEb
371 13 325 370 jca32 φHVxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEvxByBaBbBzByxJzyEz=aEb
372 4 5 6 istrkgcb H𝒢TarskiCBHVxByBzBuBaBbBcBvBxyyxJzbaJcxEy=aEbyEz=bEcxEu=aEvyEu=bEvzEu=cEvxByBaBbBzByxJzyEz=aEb
373 371 372 sylibr φH𝒢TarskiCB
374 4 5 6 istrkgl Hf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxizHVLine𝒢H=xB,yBxzB|zxJyxzJyyxJz
375 13 12 374 sylanbrc φHf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
376 373 375 elind φH𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
377 253 376 elind φH𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
378 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
379 377 378 eleqtrrdi φH𝒢Tarski