| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpodvdsmulf1o.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
mpodvdsmulf1o.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
mpodvdsmulf1o.3 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 4 |
|
mpodvdsmulf1o.x |
⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } |
| 5 |
|
mpodvdsmulf1o.y |
⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
| 6 |
|
mpodvdsmulf1o.z |
⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } |
| 7 |
|
mpomulf |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ |
| 8 |
|
ffn |
⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) |
| 10 |
4
|
ssrab3 |
⊢ 𝑋 ⊆ ℕ |
| 11 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
| 12 |
10 11
|
sstri |
⊢ 𝑋 ⊆ ℂ |
| 13 |
5
|
ssrab3 |
⊢ 𝑌 ⊆ ℕ |
| 14 |
13 11
|
sstri |
⊢ 𝑌 ⊆ ℂ |
| 15 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
| 16 |
12 14 15
|
mp2an |
⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
| 17 |
|
fnssres |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 18 |
9 16 17
|
mp2an |
⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 20 |
|
ovres |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 22 |
12
|
sseli |
⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ ℂ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → 𝑖 ∈ ℂ ) |
| 24 |
14
|
sseli |
⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∈ ℂ ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ ℂ ) |
| 26 |
|
ovmpot |
⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) |
| 27 |
26
|
eqcomd |
⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 28 |
23 25 27
|
syl2anc |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 30 |
10
|
sseli |
⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ ) |
| 31 |
30
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℕ ) |
| 32 |
13
|
sseli |
⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ ) |
| 33 |
32
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℕ ) |
| 34 |
31 33
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 35 |
|
breq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁 ) ) |
| 36 |
35 5
|
elrab2 |
⊢ ( 𝑗 ∈ 𝑌 ↔ ( 𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁 ) ) |
| 37 |
36
|
simprbi |
⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁 ) |
| 38 |
37
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∥ 𝑁 ) |
| 39 |
|
breq1 |
⊢ ( 𝑥 = 𝑖 → ( 𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀 ) ) |
| 40 |
39 4
|
elrab2 |
⊢ ( 𝑖 ∈ 𝑋 ↔ ( 𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀 ) ) |
| 41 |
40
|
simprbi |
⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀 ) |
| 42 |
41
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∥ 𝑀 ) |
| 43 |
33
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℤ ) |
| 44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℕ ) |
| 45 |
44
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℤ ) |
| 46 |
31
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℤ ) |
| 47 |
|
dvdscmul |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) |
| 48 |
43 45 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) |
| 49 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℕ ) |
| 50 |
49
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℤ ) |
| 51 |
|
dvdsmulc |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 52 |
46 50 45 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 53 |
34
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℤ ) |
| 54 |
46 45
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑁 ) ∈ ℤ ) |
| 55 |
50 45
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 56 |
|
dvdstr |
⊢ ( ( ( 𝑖 · 𝑗 ) ∈ ℤ ∧ ( 𝑖 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 57 |
53 54 55 56
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 58 |
48 52 57
|
syl2and |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( 𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀 ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 59 |
38 42 58
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 60 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑖 · 𝑗 ) → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 61 |
60 6
|
elrab2 |
⊢ ( ( 𝑖 · 𝑗 ) ∈ 𝑍 ↔ ( ( 𝑖 · 𝑗 ) ∈ ℕ ∧ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 62 |
34 59 61
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ 𝑍 ) |
| 63 |
29 62
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ∈ 𝑍 ) |
| 64 |
21 63
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 65 |
64
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 66 |
|
ffnov |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) ) |
| 67 |
19 65 66
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 68 |
23
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑖 ∈ ℂ ) |
| 69 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑗 ∈ ℂ ) |
| 70 |
68 69 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) |
| 71 |
12
|
sseli |
⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∈ ℂ ) |
| 72 |
71
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑚 ∈ ℂ ) |
| 73 |
14
|
sseli |
⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∈ ℂ ) |
| 74 |
73
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑛 ∈ ℂ ) |
| 75 |
|
ovmpot |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 76 |
72 74 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 77 |
70 76
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ↔ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) |
| 78 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ ) |
| 79 |
78
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 80 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ 𝑋 ) |
| 81 |
10 80
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 82 |
81
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 83 |
78
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℤ ) |
| 84 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℕ ) |
| 85 |
84
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℤ ) |
| 86 |
|
dvdsmul1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) |
| 87 |
83 85 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) |
| 88 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) |
| 89 |
12 80
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℂ ) |
| 90 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ 𝑌 ) |
| 91 |
14 90
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℂ ) |
| 92 |
89 91
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑛 · 𝑚 ) ) |
| 93 |
88 92
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑛 · 𝑚 ) ) |
| 94 |
87 93
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑛 · 𝑚 ) ) |
| 95 |
13 90
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
| 96 |
95
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℤ ) |
| 97 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑁 ∈ ℤ ) |
| 98 |
83 97
|
gcdcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = ( 𝑁 gcd 𝑖 ) ) |
| 99 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑀 ∈ ℤ ) |
| 100 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 101 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 102 |
100 101
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 103 |
102 3
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 105 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑀 ) |
| 106 |
|
rpdvds |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑖 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) |
| 107 |
97 83 99 104 105 106
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) |
| 108 |
98 107
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = 1 ) |
| 109 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁 ) ) |
| 110 |
109 5
|
elrab2 |
⊢ ( 𝑛 ∈ 𝑌 ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁 ) ) |
| 111 |
110
|
simprbi |
⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁 ) |
| 112 |
90 111
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∥ 𝑁 ) |
| 113 |
|
rpdvds |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑖 gcd 𝑁 ) = 1 ∧ 𝑛 ∥ 𝑁 ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) |
| 114 |
83 96 97 108 112 113
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) |
| 115 |
81
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℤ ) |
| 116 |
|
coprmdvds |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) |
| 117 |
83 96 115 116
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) |
| 118 |
94 114 117
|
mp2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑚 ) |
| 119 |
|
dvdsmul1 |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) |
| 120 |
115 96 119
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) |
| 121 |
78
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℂ ) |
| 122 |
84
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℂ ) |
| 123 |
121 122
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑗 · 𝑖 ) ) |
| 124 |
88 123
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑗 · 𝑖 ) ) |
| 125 |
120 124
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑗 · 𝑖 ) ) |
| 126 |
115 97
|
gcdcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = ( 𝑁 gcd 𝑚 ) ) |
| 127 |
|
breq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀 ) ) |
| 128 |
127 4
|
elrab2 |
⊢ ( 𝑚 ∈ 𝑋 ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀 ) ) |
| 129 |
128
|
simprbi |
⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀 ) |
| 130 |
80 129
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑀 ) |
| 131 |
|
rpdvds |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑚 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) |
| 132 |
97 115 99 104 130 131
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) |
| 133 |
126 132
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = 1 ) |
| 134 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∥ 𝑁 ) |
| 135 |
|
rpdvds |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑚 gcd 𝑁 ) = 1 ∧ 𝑗 ∥ 𝑁 ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) |
| 136 |
115 85 97 133 134 135
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) |
| 137 |
|
coprmdvds |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) |
| 138 |
115 85 83 137
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) |
| 139 |
125 136 138
|
mp2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑖 ) |
| 140 |
|
dvdseq |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖 ) ) → 𝑖 = 𝑚 ) |
| 141 |
79 82 118 139 140
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 = 𝑚 ) |
| 142 |
78
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ≠ 0 ) |
| 143 |
141
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 144 |
88 143
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑖 · 𝑛 ) ) |
| 145 |
122 91 121 142 144
|
mulcanad |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 = 𝑛 ) |
| 146 |
141 145
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) |
| 147 |
146
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 148 |
77 147
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 149 |
148
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 150 |
149
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 151 |
|
fvres |
⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) ) |
| 152 |
|
fvres |
⊢ ( 𝑣 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ) |
| 153 |
151 152
|
eqeqan12d |
⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ) ) |
| 154 |
153
|
imbi1d |
⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 155 |
154
|
ralbidva |
⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 156 |
155
|
ralbiia |
⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 157 |
|
fveq2 |
⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑚 , 𝑛 〉 ) ) |
| 158 |
|
df-ov |
⊢ ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑚 , 𝑛 〉 ) |
| 159 |
157 158
|
eqtr4di |
⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) |
| 160 |
159
|
eqeq2d |
⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) ) |
| 161 |
|
eqeq2 |
⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( 𝑢 = 𝑣 ↔ 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) |
| 162 |
160 161
|
imbi12d |
⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 163 |
162
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑖 , 𝑗 〉 ) ) |
| 165 |
|
df-ov |
⊢ ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑖 , 𝑗 〉 ) |
| 166 |
164 165
|
eqtr4di |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 167 |
166
|
eqeq1d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ↔ ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) ) |
| 168 |
|
eqeq1 |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 𝑢 = 〈 𝑚 , 𝑛 〉 ↔ 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 169 |
167 168
|
imbi12d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 170 |
169
|
2ralbidv |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 171 |
163 170
|
bitrid |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 172 |
171
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 173 |
156 172
|
bitri |
⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 174 |
150 173
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 175 |
|
dff13 |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 176 |
67 174 175
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ) |
| 177 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 178 |
177 6
|
elrab2 |
⊢ ( 𝑤 ∈ 𝑍 ↔ ( 𝑤 ∈ ℕ ∧ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 179 |
178
|
simplbi |
⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ ) |
| 180 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℕ ) |
| 181 |
180
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℤ ) |
| 182 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℕ ) |
| 183 |
182
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
| 184 |
182
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ≠ 0 ) |
| 185 |
|
simpr |
⊢ ( ( 𝑤 = 0 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
| 186 |
185
|
necon3ai |
⊢ ( 𝑀 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 187 |
184 186
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 188 |
|
gcdn0cl |
⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 189 |
181 183 187 188
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 190 |
|
gcddvds |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 191 |
181 183 190
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 192 |
191
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) |
| 193 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑤 gcd 𝑀 ) → ( 𝑥 ∥ 𝑀 ↔ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 194 |
193 4
|
elrab2 |
⊢ ( ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ↔ ( ( 𝑤 gcd 𝑀 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 195 |
189 192 194
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ) |
| 196 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℕ ) |
| 197 |
196
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℤ ) |
| 198 |
196
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ≠ 0 ) |
| 199 |
|
simpr |
⊢ ( ( 𝑤 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 200 |
199
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 201 |
198 200
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 202 |
|
gcdn0cl |
⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 203 |
181 197 201 202
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 204 |
|
gcddvds |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 205 |
181 197 204
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 206 |
205
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) |
| 207 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑤 gcd 𝑁 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 208 |
207 5
|
elrab2 |
⊢ ( ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ↔ ( ( 𝑤 gcd 𝑁 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 209 |
203 206 208
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ) |
| 210 |
195 209
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 211 |
210
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 212 |
|
df-ov |
⊢ ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) |
| 213 |
189
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ ℂ ) |
| 214 |
203
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ ℂ ) |
| 215 |
|
ovmpot |
⊢ ( ( ( 𝑤 gcd 𝑀 ) ∈ ℂ ∧ ( 𝑤 gcd 𝑁 ) ∈ ℂ ) → ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 216 |
213 214 215
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 217 |
212 216
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 218 |
|
df-ov |
⊢ ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) |
| 219 |
218
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 220 |
211 217 219
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 221 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 222 |
|
rpmulgcd2 |
⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 223 |
181 183 197 221 222
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 224 |
223 218
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 225 |
178
|
simprbi |
⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 226 |
225
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 227 |
1 2
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 228 |
|
gcdeq |
⊢ ( ( 𝑤 ∈ ℕ ∧ ( 𝑀 · 𝑁 ) ∈ ℕ ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 229 |
179 227 228
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 230 |
226 229
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ) |
| 231 |
220 224 230
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 232 |
|
fveq2 |
⊢ ( 𝑢 = 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 233 |
232
|
rspceeqv |
⊢ ( ( 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 234 |
210 231 233
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 235 |
234
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 236 |
|
dffo3 |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) ) |
| 237 |
67 235 236
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) |
| 238 |
|
df-f1o |
⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ∧ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) ) |
| 239 |
176 237 238
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |