Step |
Hyp |
Ref |
Expression |
1 |
|
ptpjcn.1 |
⊢ 𝑌 = ∪ 𝐽 |
2 |
|
ptpjcn.2 |
⊢ 𝐽 = ( ∏t ‘ 𝐹 ) |
3 |
|
df-ima |
⊢ ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) = ran ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) |
4 |
|
elssuni |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) |
5 |
4 1
|
sseqtrrdi |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ 𝑌 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑌 ) |
7 |
6
|
resmptd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) = ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
8 |
7
|
rneqd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ran ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ↾ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
9 |
3 8
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) = ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
10 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ Top → 𝐹 Fn 𝐴 ) |
11 |
|
eqid |
⊢ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
12 |
11
|
ptval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
13 |
10 12
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
14 |
2 13
|
eqtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → 𝐽 = ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
16 |
15
|
eleq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑈 ∈ 𝐽 ↔ 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
18 |
|
tg2 |
⊢ ( ( 𝑈 ∈ ( topGen ‘ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ) |
19 |
17 18
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ) |
20 |
|
vex |
⊢ 𝑤 ∈ V |
21 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑤 → ( 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑠 = 𝑤 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
23 |
22
|
exbidv |
⊢ ( 𝑠 = 𝑤 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
24 |
20 23
|
elab |
⊢ ( 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑦 = 𝐼 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝐼 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑦 = 𝐼 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐼 ) ) |
27 |
25 26
|
eleq12d |
⊢ ( 𝑦 = 𝐼 → ( ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ) ) |
28 |
|
simplr2 |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
29 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐼 ∈ 𝐴 ) |
30 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → 𝐼 ∈ 𝐴 ) |
31 |
27 28 30
|
rspcdva |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 𝐼 → ( 𝑠 ‘ 𝑦 ) = ( 𝑠 ‘ 𝐼 ) ) |
33 |
32 25
|
eleq12d |
⊢ ( 𝑦 = 𝐼 → ( ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) ) |
34 |
|
vex |
⊢ 𝑠 ∈ V |
35 |
34
|
elixp |
⊢ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
36 |
35
|
simprbi |
⊢ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
37 |
36
|
ad2antrl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
38 |
33 37 30
|
rspcdva |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) |
39 |
|
simplrr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) |
40 |
|
simplrl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑛 = 𝐼 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝐼 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝐼 ) ) |
43 |
40 42
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ 𝑛 = 𝐼 ) → 𝑘 ∈ ( 𝑔 ‘ 𝑛 ) ) |
44 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑠 ‘ 𝑦 ) = ( 𝑠 ‘ 𝑛 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑛 ) ) |
46 |
44 45
|
eleq12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ↔ ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
47 |
|
simplrl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
48 |
47 36
|
syl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑠 ‘ 𝑦 ) ∈ ( 𝑔 ‘ 𝑦 ) ) |
49 |
|
simprr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → 𝑛 ∈ 𝐴 ) |
50 |
46 48 49
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) ∧ ¬ 𝑛 = 𝐼 ) → ( 𝑠 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
52 |
43 51
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) ) → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
53 |
52
|
anassrs |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) ∧ 𝑛 ∈ 𝐴 ) → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
54 |
53
|
ralrimiva |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
55 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → 𝐴 ∈ 𝑉 ) |
56 |
55
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝐴 ∈ 𝑉 ) |
57 |
|
mptelixpg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
59 |
54 58
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑦 ) ) |
61 |
60
|
cbvixpv |
⊢ X 𝑛 ∈ 𝐴 ( 𝑔 ‘ 𝑛 ) = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) |
62 |
59 61
|
eleqtrdi |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
63 |
39 62
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ 𝑈 ) |
64 |
30
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝐼 ∈ 𝐴 ) |
65 |
|
iftrue |
⊢ ( 𝑛 = 𝐼 → if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) = 𝑘 ) |
66 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) |
67 |
|
vex |
⊢ 𝑘 ∈ V |
68 |
65 66 67
|
fvmpt |
⊢ ( 𝐼 ∈ 𝐴 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) = 𝑘 ) |
69 |
64 68
|
syl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) = 𝑘 ) |
70 |
69
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝑘 = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) |
71 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) → ( 𝑥 ‘ 𝐼 ) = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) |
72 |
71
|
rspceeqv |
⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ∈ 𝑈 ∧ 𝑘 = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝐼 , 𝑘 , ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) → ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
73 |
63 70 72
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
74 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) |
75 |
74
|
elrnmpt |
⊢ ( 𝑘 ∈ V → ( 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) ) |
76 |
75
|
elv |
⊢ ( 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ∃ 𝑥 ∈ 𝑈 𝑘 = ( 𝑥 ‘ 𝐼 ) ) |
77 |
73 76
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) ) → 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
78 |
77
|
ex |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑘 ∈ ( 𝑔 ‘ 𝐼 ) → 𝑘 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
79 |
78
|
ssrdv |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
80 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ↔ ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ) ) |
81 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ↔ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
82 |
80 81
|
anbi12d |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝐼 ) → ( ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ( ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ∧ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
83 |
82
|
rspcev |
⊢ ( ( ( 𝑔 ‘ 𝐼 ) ∈ ( 𝐹 ‘ 𝐼 ) ∧ ( ( 𝑠 ‘ 𝐼 ) ∈ ( 𝑔 ‘ 𝐼 ) ∧ ( 𝑔 ‘ 𝐼 ) ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
84 |
31 38 79 83
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
85 |
84
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
86 |
|
eleq2 |
⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑠 ∈ 𝑤 ↔ 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
87 |
|
sseq1 |
⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑤 ⊆ 𝑈 ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) |
88 |
86 87
|
anbi12d |
⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) ↔ ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) ) ) |
89 |
88
|
imbi1d |
⊢ ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ↔ ( ( 𝑠 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
90 |
85 89
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
91 |
90
|
expimpd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
92 |
91
|
exlimdv |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
93 |
24 92
|
syl5bi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } → ( ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) |
94 |
93
|
rexlimdv |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ { 𝑠 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
95 |
19 94
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
96 |
95
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
97 |
|
fvex |
⊢ ( 𝑠 ‘ 𝐼 ) ∈ V |
98 |
97
|
rgenw |
⊢ ∀ 𝑠 ∈ 𝑈 ( 𝑠 ‘ 𝐼 ) ∈ V |
99 |
|
fveq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ‘ 𝐼 ) = ( 𝑠 ‘ 𝐼 ) ) |
100 |
99
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑠 ∈ 𝑈 ↦ ( 𝑠 ‘ 𝐼 ) ) |
101 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( 𝑦 ∈ 𝑧 ↔ ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ) ) |
102 |
101
|
anbi1d |
⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
103 |
102
|
rexbidv |
⊢ ( 𝑦 = ( 𝑠 ‘ 𝐼 ) → ( ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
104 |
100 103
|
ralrnmptw |
⊢ ( ∀ 𝑠 ∈ 𝑈 ( 𝑠 ‘ 𝐼 ) ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
105 |
98 104
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ↔ ∀ 𝑠 ∈ 𝑈 ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 ) ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
106 |
96 105
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) |
107 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 : 𝐴 ⟶ Top ) |
108 |
107 29
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 ‘ 𝐼 ) ∈ Top ) |
109 |
|
eltop2 |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ Top → ( ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
110 |
108 109
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧 ∈ ( 𝐹 ‘ 𝐼 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ) ) ) |
111 |
106 110
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ran ( 𝑥 ∈ 𝑈 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐹 ‘ 𝐼 ) ) |
112 |
9 111
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑈 ) ∈ ( 𝐹 ‘ 𝐼 ) ) |