Metamath Proof Explorer


Theorem pw2cut2

Description: Cut expression for powers of two. Theorem 12 of Conway p. 12-13. (Contributed by Scott Fenton, 18-Jan-2026)

Ref Expression
Assertion pw2cut2 ( ( 𝐴 ∈ ℤs𝑁 ∈ ℕ0s ) → ( 𝐴 /su ( 2ss 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑚 = 0s → ( 2ss 𝑚 ) = ( 2ss 0s ) )
2 2sno 2s No
3 exps0 ( 2s No → ( 2ss 0s ) = 1s )
4 2 3 ax-mp ( 2ss 0s ) = 1s
5 1 4 eqtrdi ( 𝑚 = 0s → ( 2ss 𝑚 ) = 1s )
6 5 oveq2d ( 𝑚 = 0s → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( 𝐴 /su 1s ) )
7 5 oveq2d ( 𝑚 = 0s → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su 1s ) )
8 7 sneqd ( 𝑚 = 0s → { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su 1s ) } )
9 5 oveq2d ( 𝑚 = 0s → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su 1s ) )
10 9 sneqd ( 𝑚 = 0s → { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su 1s ) } )
11 8 10 oveq12d ( 𝑚 = 0s → ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) )
12 6 11 eqeq12d ( 𝑚 = 0s → ( ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ↔ ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) )
13 12 imbi2d ( 𝑚 = 0s → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) ) )
14 oveq2 ( 𝑚 = 𝑛 → ( 2ss 𝑚 ) = ( 2ss 𝑛 ) )
15 14 oveq2d ( 𝑚 = 𝑛 → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
16 14 oveq2d ( 𝑚 = 𝑛 → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) )
17 16 sneqd ( 𝑚 = 𝑛 → { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } )
18 14 oveq2d ( 𝑚 = 𝑛 → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) )
19 18 sneqd ( 𝑚 = 𝑛 → { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } )
20 17 19 oveq12d ( 𝑚 = 𝑛 → ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) )
21 15 20 eqeq12d ( 𝑚 = 𝑛 → ( ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) )
22 21 imbi2d ( 𝑚 = 𝑛 → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) ) )
23 oveq2 ( 𝑚 = ( 𝑛 +s 1s ) → ( 2ss 𝑚 ) = ( 2ss ( 𝑛 +s 1s ) ) )
24 23 oveq2d ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) )
25 23 oveq2d ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
26 25 sneqd ( 𝑚 = ( 𝑛 +s 1s ) → { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
27 23 oveq2d ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
28 27 sneqd ( 𝑚 = ( 𝑛 +s 1s ) → { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
29 26 28 oveq12d ( 𝑚 = ( 𝑛 +s 1s ) → ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
30 24 29 eqeq12d ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
31 30 imbi2d ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
32 oveq2 ( 𝑚 = 𝑁 → ( 2ss 𝑚 ) = ( 2ss 𝑁 ) )
33 32 oveq2d ( 𝑚 = 𝑁 → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( 𝐴 /su ( 2ss 𝑁 ) ) )
34 32 oveq2d ( 𝑚 = 𝑁 → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) )
35 34 sneqd ( 𝑚 = 𝑁 → { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } )
36 32 oveq2d ( 𝑚 = 𝑁 → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) )
37 36 sneqd ( 𝑚 = 𝑁 → { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } )
38 35 37 oveq12d ( 𝑚 = 𝑁 → ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) )
39 33 38 eqeq12d ( 𝑚 = 𝑁 → ( ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2ss 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) ) )
40 39 imbi2d ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) ) ) )
41 zscut ( 𝐴 ∈ ℤs𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) )
42 zno ( 𝐴 ∈ ℤs𝐴 No )
43 divs1 ( 𝐴 No → ( 𝐴 /su 1s ) = 𝐴 )
44 42 43 syl ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = 𝐴 )
45 1sno 1s No
46 45 a1i ( 𝐴 ∈ ℤs → 1s No )
47 42 46 subscld ( 𝐴 ∈ ℤs → ( 𝐴 -s 1s ) ∈ No )
48 divs1 ( ( 𝐴 -s 1s ) ∈ No → ( ( 𝐴 -s 1s ) /su 1s ) = ( 𝐴 -s 1s ) )
49 47 48 syl ( 𝐴 ∈ ℤs → ( ( 𝐴 -s 1s ) /su 1s ) = ( 𝐴 -s 1s ) )
50 49 sneqd ( 𝐴 ∈ ℤs → { ( ( 𝐴 -s 1s ) /su 1s ) } = { ( 𝐴 -s 1s ) } )
51 42 46 addscld ( 𝐴 ∈ ℤs → ( 𝐴 +s 1s ) ∈ No )
52 divs1 ( ( 𝐴 +s 1s ) ∈ No → ( ( 𝐴 +s 1s ) /su 1s ) = ( 𝐴 +s 1s ) )
53 51 52 syl ( 𝐴 ∈ ℤs → ( ( 𝐴 +s 1s ) /su 1s ) = ( 𝐴 +s 1s ) )
54 53 sneqd ( 𝐴 ∈ ℤs → { ( ( 𝐴 +s 1s ) /su 1s ) } = { ( 𝐴 +s 1s ) } )
55 50 54 oveq12d ( 𝐴 ∈ ℤs → ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) )
56 41 44 55 3eqtr4d ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) )
57 simp2 ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 𝐴 ∈ ℤs )
58 57 znod ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 𝐴 No )
59 45 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 1s No )
60 58 59 subscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) ∈ No )
61 simp1 ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 𝑛 ∈ ℕ0s )
62 peano2n0s ( 𝑛 ∈ ℕ0s → ( 𝑛 +s 1s ) ∈ ℕ0s )
63 61 62 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝑛 +s 1s ) ∈ ℕ0s )
64 60 63 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ No )
65 58 59 addscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 +s 1s ) ∈ No )
66 65 63 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ No )
67 58 sltm1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) <s 𝐴 )
68 58 sltp1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 𝐴 <s ( 𝐴 +s 1s ) )
69 60 58 65 67 68 slttrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) )
70 60 65 63 pw2sltdiv1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ↔ ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
71 69 70 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
72 64 66 71 ssltsn ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
73 72 scutcld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ No )
74 64 73 addscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ∈ No )
75 66 73 addscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ∈ No )
76 64 66 73 sltadd1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
77 71 76 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
78 74 75 77 ssltsn ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
79 60 61 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ∈ No )
80 65 61 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) ∈ No )
81 60 65 61 pw2sltdiv1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ↔ ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) ) )
82 69 81 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) )
83 79 80 82 ssltsn ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } )
84 eqidd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
85 simp3 ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) )
86 58 61 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss 𝑛 ) ) ∈ No )
87 scutcut ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ No ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } ∧ { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
88 72 87 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ No ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } ∧ { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
89 88 simp3d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
90 ovex ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ V
91 90 snid ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) }
92 91 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } )
93 ovex ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ V
94 93 snid ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) }
95 94 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
96 89 92 95 ssltsepcd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
97 73 66 64 sltadd2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ) )
98 96 97 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
99 58 58 59 addsassd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) )
100 99 oveq1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) -s 1s ) )
101 58 58 addscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 +s 𝐴 ) ∈ No )
102 pncans ( ( ( 𝐴 +s 𝐴 ) ∈ No ∧ 1s No ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 𝐴 +s 𝐴 ) )
103 101 45 102 sylancl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 𝐴 +s 𝐴 ) )
104 no2times ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
105 58 104 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
106 103 105 eqtr4d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) )
107 58 65 59 addsubsd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s ( 𝐴 +s 1s ) ) -s 1s ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) )
108 100 106 107 3eqtr3rd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) = ( 2s ·s 𝐴 ) )
109 108 oveq1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
110 60 65 63 pw2divsdird ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
111 1n0s 1s ∈ ℕ0s
112 111 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 1s ∈ ℕ0s )
113 58 61 112 pw2divscan4d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss 𝑛 ) ) = ( ( ( 2ss 1s ) ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
114 exps1 ( 2s No → ( 2ss 1s ) = 2s )
115 2 114 ax-mp ( 2ss 1s ) = 2s
116 115 oveq1i ( ( 2ss 1s ) ·s 𝐴 ) = ( 2s ·s 𝐴 )
117 116 oveq1i ( ( ( 2ss 1s ) ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) )
118 113 117 eqtr2di ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 2s ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
119 109 110 118 3eqtr3d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
120 98 119 breqtrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( 𝐴 /su ( 2ss 𝑛 ) ) )
121 74 86 120 ssltsn ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( 𝐴 /su ( 2ss 𝑛 ) ) } )
122 66 64 addscomd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
123 122 119 eqtrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
124 88 simp2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) } )
125 ovex ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ V
126 125 snid ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) }
127 126 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } )
128 124 127 92 ssltsepcd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
129 64 73 66 sltadd2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ↔ ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
130 128 129 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
131 123 130 eqbrtrrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
132 86 75 131 ssltsn ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { ( 𝐴 /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
133 60 61 112 pw2divscan4d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) = ( ( ( 2ss 1s ) ·s ( 𝐴 -s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
134 115 oveq1i ( ( 2ss 1s ) ·s ( 𝐴 -s 1s ) ) = ( 2s ·s ( 𝐴 -s 1s ) )
135 no2times ( ( 𝐴 -s 1s ) ∈ No → ( 2s ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) )
136 60 135 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) )
137 134 136 eqtrid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 2ss 1s ) ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) )
138 137 oveq1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 2ss 1s ) ·s ( 𝐴 -s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
139 60 60 63 pw2divsdird ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
140 133 138 139 3eqtrrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) )
141 64 73 64 sltadd2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
142 128 141 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
143 140 142 eqbrtrrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
144 sltasym ( ( ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ∈ No ∧ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ) )
145 79 74 144 syl2anc ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ) )
146 143 145 mpd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) )
147 74 79 ssltsnb ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ↔ ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ) )
148 146 147 mtbird ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } )
149 148 intnanrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
150 ovex ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) ∈ V
151 sneq ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) → { 𝑥𝑂 } = { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } )
152 151 breq2d ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ↔ { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ) )
153 151 breq1d ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) → ( { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ↔ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
154 152 153 anbi12d ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) → ( ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ) )
155 154 notbid ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) → ( ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ) )
156 150 155 ralsn ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
157 149 156 sylibr ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
158 73 66 66 sltadd2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ) )
159 96 158 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
160 65 61 112 pw2divscan4d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) = ( ( ( 2ss 1s ) ·s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
161 115 oveq1i ( ( 2ss 1s ) ·s ( 𝐴 +s 1s ) ) = ( 2s ·s ( 𝐴 +s 1s ) )
162 no2times ( ( 𝐴 +s 1s ) ∈ No → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) )
163 65 162 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) )
164 161 163 eqtrid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 2ss 1s ) ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) )
165 164 oveq1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 2ss 1s ) ·s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
166 65 65 63 pw2divsdird ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
167 160 165 166 3eqtrrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) )
168 159 167 breqtrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) )
169 sltasym ( ( ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ∧ ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) ∈ No ) → ( ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
170 75 80 169 syl2anc ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
171 168 170 mpd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
172 80 75 ssltsnb ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ↔ ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
173 171 172 mtbird ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
174 173 intnand ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
175 ovex ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) ∈ V
176 sneq ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → { 𝑥𝑂 } = { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } )
177 176 breq2d ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ↔ { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) )
178 176 breq1d ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ( { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ↔ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
179 177 178 anbi12d ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ( ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ) )
180 179 notbid ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) → ( ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ) )
181 175 180 ralsn ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
182 174 181 sylibr ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
183 ralunb ( ∀ 𝑥𝑂 ∈ ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∪ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ∧ ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) ) )
184 157 182 183 sylanbrc ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } ∪ { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
185 78 83 84 85 121 132 184 eqscut3 ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
186 no2times ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ∈ No → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
187 73 186 syl ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
188 eqidd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
189 72 72 188 188 addsunif ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) ) )
190 oveq1 ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
191 190 eqeq2d ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
192 125 191 rexsn ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
193 192 abbii { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
194 193 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
195 oveq2 ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
196 195 eqeq2d ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ) )
197 125 196 rexsn ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
198 73 64 addscomd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
199 198 eqeq2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
200 197 199 bitrid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
201 200 abbidv ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } = { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
202 194 201 uneq12d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = ( { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
203 unidm ( { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
204 df-sn { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
205 203 204 eqtr4i ( { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
206 202 205 eqtrdi ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
207 oveq1 ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
208 207 eqeq2d ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
209 93 208 rexsn ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
210 209 abbii { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
211 210 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
212 oveq2 ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
213 212 eqeq2d ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ) )
214 93 213 rexsn ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
215 73 66 addscomd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
216 215 eqeq2d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
217 214 216 bitrid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
218 217 abbidv ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } = { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
219 211 218 uneq12d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = ( { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
220 unidm ( { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
221 df-sn { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
222 220 221 eqtr4i ( { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) = { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) }
223 219 222 eqtrdi ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } )
224 206 223 oveq12d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
225 187 189 224 3eqtrd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) } ) )
226 2 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 2s No )
227 226 58 63 pw2divsassd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 2s ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 2s ·s ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
228 117 227 eqtr2id ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( ( ( 2ss 1s ) ·s 𝐴 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
229 228 113 eqtr4d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2ss 𝑛 ) ) )
230 185 225 229 3eqtr4rd ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
231 58 63 pw2divscld ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ No )
232 2ne0s 2s ≠ 0s
233 232 a1i ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → 2s ≠ 0s )
234 231 73 226 233 mulscan1d ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( ( 2s ·s ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ↔ ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) )
235 230 234 mpbid ( ( 𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) )
236 235 3exp ( 𝑛 ∈ ℕ0s → ( 𝐴 ∈ ℤs → ( ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) → ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
237 236 a2d ( 𝑛 ∈ ℕ0s → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑛 ) ) } ) ) → ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss ( 𝑛 +s 1s ) ) ) } ) ) ) )
238 13 22 31 40 56 237 n0sind ( 𝑁 ∈ ℕ0s → ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2ss 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) ) )
239 238 impcom ( ( 𝐴 ∈ ℤs𝑁 ∈ ℕ0s ) → ( 𝐴 /su ( 2ss 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) )