| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = ( 2s ↑s 0s ) ) |
| 2 |
|
2sno |
⊢ 2s ∈ No |
| 3 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
| 5 |
1 4
|
eqtrdi |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = 1s ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑚 = 0s → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( 𝐴 /su 1s ) ) |
| 7 |
5
|
oveq2d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su 1s ) ) |
| 8 |
7
|
sneqd |
⊢ ( 𝑚 = 0s → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su 1s ) } ) |
| 9 |
5
|
oveq2d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su 1s ) ) |
| 10 |
9
|
sneqd |
⊢ ( 𝑚 = 0s → { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su 1s ) } ) |
| 11 |
8 10
|
oveq12d |
⊢ ( 𝑚 = 0s → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) |
| 12 |
6 11
|
eqeq12d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ↔ ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑛 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 16 |
14
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 17 |
16
|
sneqd |
⊢ ( 𝑚 = 𝑛 → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 18 |
14
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 19 |
18
|
sneqd |
⊢ ( 𝑚 = 𝑛 → { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 20 |
17 19
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 21 |
15 20
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 2s ↑s 𝑚 ) = ( 2s ↑s ( 𝑛 +s 1s ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 25 |
23
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 26 |
25
|
sneqd |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 27 |
23
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 28 |
27
|
sneqd |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 29 |
26 28
|
oveq12d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 30 |
24 29
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑁 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) |
| 34 |
32
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) ) |
| 35 |
34
|
sneqd |
⊢ ( 𝑚 = 𝑁 → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) |
| 36 |
32
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) ) |
| 37 |
36
|
sneqd |
⊢ ( 𝑚 = 𝑁 → { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } = { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) |
| 38 |
35 37
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) ) |
| 39 |
33 38
|
eqeq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ↔ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) ) ) |
| 40 |
39
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑚 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑚 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑚 ) ) } ) ) ↔ ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) ) ) ) |
| 41 |
|
zscut |
⊢ ( 𝐴 ∈ ℤs → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 42 |
|
zno |
⊢ ( 𝐴 ∈ ℤs → 𝐴 ∈ No ) |
| 43 |
|
divs1 |
⊢ ( 𝐴 ∈ No → ( 𝐴 /su 1s ) = 𝐴 ) |
| 44 |
42 43
|
syl |
⊢ ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = 𝐴 ) |
| 45 |
|
1sno |
⊢ 1s ∈ No |
| 46 |
45
|
a1i |
⊢ ( 𝐴 ∈ ℤs → 1s ∈ No ) |
| 47 |
42 46
|
subscld |
⊢ ( 𝐴 ∈ ℤs → ( 𝐴 -s 1s ) ∈ No ) |
| 48 |
|
divs1 |
⊢ ( ( 𝐴 -s 1s ) ∈ No → ( ( 𝐴 -s 1s ) /su 1s ) = ( 𝐴 -s 1s ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝐴 ∈ ℤs → ( ( 𝐴 -s 1s ) /su 1s ) = ( 𝐴 -s 1s ) ) |
| 50 |
49
|
sneqd |
⊢ ( 𝐴 ∈ ℤs → { ( ( 𝐴 -s 1s ) /su 1s ) } = { ( 𝐴 -s 1s ) } ) |
| 51 |
42 46
|
addscld |
⊢ ( 𝐴 ∈ ℤs → ( 𝐴 +s 1s ) ∈ No ) |
| 52 |
|
divs1 |
⊢ ( ( 𝐴 +s 1s ) ∈ No → ( ( 𝐴 +s 1s ) /su 1s ) = ( 𝐴 +s 1s ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝐴 ∈ ℤs → ( ( 𝐴 +s 1s ) /su 1s ) = ( 𝐴 +s 1s ) ) |
| 54 |
53
|
sneqd |
⊢ ( 𝐴 ∈ ℤs → { ( ( 𝐴 +s 1s ) /su 1s ) } = { ( 𝐴 +s 1s ) } ) |
| 55 |
50 54
|
oveq12d |
⊢ ( 𝐴 ∈ ℤs → ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 56 |
41 44 55
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℤs → ( 𝐴 /su 1s ) = ( { ( ( 𝐴 -s 1s ) /su 1s ) } |s { ( ( 𝐴 +s 1s ) /su 1s ) } ) ) |
| 57 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 𝐴 ∈ ℤs ) |
| 58 |
57
|
znod |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 𝐴 ∈ No ) |
| 59 |
45
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 1s ∈ No ) |
| 60 |
58 59
|
subscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) ∈ No ) |
| 61 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 𝑛 ∈ ℕ0s ) |
| 62 |
|
peano2n0s |
⊢ ( 𝑛 ∈ ℕ0s → ( 𝑛 +s 1s ) ∈ ℕ0s ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝑛 +s 1s ) ∈ ℕ0s ) |
| 64 |
60 63
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ No ) |
| 65 |
58 59
|
addscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 +s 1s ) ∈ No ) |
| 66 |
65 63
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ No ) |
| 67 |
58
|
sltm1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) <s 𝐴 ) |
| 68 |
58
|
sltp1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 69 |
60 58 65 67 68
|
slttrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ) |
| 70 |
60 65 63
|
pw2sltdiv1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ↔ ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 71 |
69 70
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 72 |
64 66 71
|
ssltsn |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 73 |
72
|
scutcld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ No ) |
| 74 |
64 73
|
addscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ) |
| 75 |
66 73
|
addscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ) |
| 76 |
64 66 73
|
sltadd1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 77 |
71 76
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 78 |
74 75 77
|
ssltsn |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 79 |
60 61
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 80 |
65 61
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 81 |
60 65 61
|
pw2sltdiv1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ↔ ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 82 |
69 81
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 83 |
79 80 82
|
ssltsn |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 84 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 85 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 86 |
58 61
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 87 |
|
scutcut |
⊢ ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ No ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } ∧ { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 88 |
72 87
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ No ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } ∧ { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 89 |
88
|
simp3d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 90 |
|
ovex |
⊢ ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ V |
| 91 |
90
|
snid |
⊢ ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } |
| 92 |
91
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } ) |
| 93 |
|
ovex |
⊢ ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ V |
| 94 |
93
|
snid |
⊢ ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |
| 95 |
94
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 96 |
89 92 95
|
ssltsepcd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 97 |
73 66 64
|
sltadd2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) ) |
| 98 |
96 97
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 99 |
58 58 59
|
addsassd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 100 |
99
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) -s 1s ) ) |
| 101 |
58 58
|
addscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 +s 𝐴 ) ∈ No ) |
| 102 |
|
pncans |
⊢ ( ( ( 𝐴 +s 𝐴 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 𝐴 +s 𝐴 ) ) |
| 103 |
101 45 102
|
sylancl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 𝐴 +s 𝐴 ) ) |
| 104 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 105 |
58 104
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 106 |
103 105
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
| 107 |
58 65 59
|
addsubsd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s ( 𝐴 +s 1s ) ) -s 1s ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) ) |
| 108 |
100 106 107
|
3eqtr3rd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) = ( 2s ·s 𝐴 ) ) |
| 109 |
108
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 110 |
60 65 63
|
pw2divsdird |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 111 |
|
1n0s |
⊢ 1s ∈ ℕ0s |
| 112 |
111
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 1s ∈ ℕ0s ) |
| 113 |
58 61 112
|
pw2divscan4d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( ( ( 2s ↑s 1s ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 114 |
|
exps1 |
⊢ ( 2s ∈ No → ( 2s ↑s 1s ) = 2s ) |
| 115 |
2 114
|
ax-mp |
⊢ ( 2s ↑s 1s ) = 2s |
| 116 |
115
|
oveq1i |
⊢ ( ( 2s ↑s 1s ) ·s 𝐴 ) = ( 2s ·s 𝐴 ) |
| 117 |
116
|
oveq1i |
⊢ ( ( ( 2s ↑s 1s ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) |
| 118 |
113 117
|
eqtr2di |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 2s ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 119 |
109 110 118
|
3eqtr3d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 120 |
98 119
|
breqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 121 |
74 86 120
|
ssltsn |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( 𝐴 /su ( 2s ↑s 𝑛 ) ) } ) |
| 122 |
66 64
|
addscomd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 123 |
122 119
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 124 |
88
|
simp2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } <<s { ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) } ) |
| 125 |
|
ovex |
⊢ ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ V |
| 126 |
125
|
snid |
⊢ ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |
| 127 |
126
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) |
| 128 |
124 127 92
|
ssltsepcd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 129 |
64 73 66
|
sltadd2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ↔ ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 130 |
128 129
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 131 |
123 130
|
eqbrtrrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 132 |
86 75 131
|
ssltsn |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { ( 𝐴 /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 133 |
60 61 112
|
pw2divscan4d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) = ( ( ( 2s ↑s 1s ) ·s ( 𝐴 -s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 134 |
115
|
oveq1i |
⊢ ( ( 2s ↑s 1s ) ·s ( 𝐴 -s 1s ) ) = ( 2s ·s ( 𝐴 -s 1s ) ) |
| 135 |
|
no2times |
⊢ ( ( 𝐴 -s 1s ) ∈ No → ( 2s ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) ) |
| 136 |
60 135
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) ) |
| 137 |
134 136
|
eqtrid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 2s ↑s 1s ) ·s ( 𝐴 -s 1s ) ) = ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) ) |
| 138 |
137
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 2s ↑s 1s ) ·s ( 𝐴 -s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 139 |
60 60 63
|
pw2divsdird |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) +s ( 𝐴 -s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 140 |
133 138 139
|
3eqtrrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 141 |
64 73 64
|
sltadd2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) <s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ↔ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 142 |
128 141
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 143 |
140 142
|
eqbrtrrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 144 |
|
sltasym |
⊢ ( ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ∧ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 145 |
79 74 144
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 146 |
143 145
|
mpd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 147 |
74 79
|
ssltsnb |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ↔ ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 148 |
146 147
|
mtbird |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 149 |
148
|
intnanrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 150 |
|
ovex |
⊢ ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ V |
| 151 |
|
sneq |
⊢ ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) → { 𝑥𝑂 } = { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 152 |
151
|
breq2d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ↔ { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 153 |
151
|
breq1d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ↔ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 154 |
152 153
|
anbi12d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) ) |
| 155 |
154
|
notbid |
⊢ ( 𝑥𝑂 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) ) |
| 156 |
150 155
|
ralsn |
⊢ ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 157 |
149 156
|
sylibr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 158 |
73 66 66
|
sltadd2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ↔ ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) ) |
| 159 |
96 158
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 160 |
65 61 112
|
pw2divscan4d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) = ( ( ( 2s ↑s 1s ) ·s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 161 |
115
|
oveq1i |
⊢ ( ( 2s ↑s 1s ) ·s ( 𝐴 +s 1s ) ) = ( 2s ·s ( 𝐴 +s 1s ) ) |
| 162 |
|
no2times |
⊢ ( ( 𝐴 +s 1s ) ∈ No → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) ) |
| 163 |
65 162
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) ) |
| 164 |
161 163
|
eqtrid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 2s ↑s 1s ) ·s ( 𝐴 +s 1s ) ) = ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) ) |
| 165 |
164
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 2s ↑s 1s ) ·s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 166 |
65 65 63
|
pw2divsdird |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 167 |
160 165 166
|
3eqtrrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 168 |
159 167
|
breqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 169 |
|
sltasym |
⊢ ( ( ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ∈ No ∧ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) → ( ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 170 |
75 80 169
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) <s ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 171 |
168 170
|
mpd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 172 |
80 75
|
ssltsnb |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ↔ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) <s ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 173 |
171 172
|
mtbird |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 174 |
173
|
intnand |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 175 |
|
ovex |
⊢ ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ V |
| 176 |
|
sneq |
⊢ ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → { 𝑥𝑂 } = { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 177 |
176
|
breq2d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ↔ { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 178 |
176
|
breq1d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ↔ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 179 |
177 178
|
anbi12d |
⊢ ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) ) |
| 180 |
179
|
notbid |
⊢ ( 𝑥𝑂 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) → ( ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) ) |
| 181 |
175 180
|
ralsn |
⊢ ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 182 |
174 181
|
sylibr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 183 |
|
ralunb |
⊢ ( ∀ 𝑥𝑂 ∈ ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ↔ ( ∀ 𝑥𝑂 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ∧ ∀ 𝑥𝑂 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) ) |
| 184 |
157 182 183
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ∀ 𝑥𝑂 ∈ ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ¬ ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } <<s { 𝑥𝑂 } ∧ { 𝑥𝑂 } <<s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 185 |
78 83 84 85 121 132 184
|
eqscut3 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 186 |
|
no2times |
⊢ ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ∈ No → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 187 |
73 186
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 188 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 189 |
72 72 188 188
|
addsunif |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) ) ) |
| 190 |
|
oveq1 |
⊢ ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 191 |
190
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 192 |
125 191
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 193 |
192
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 194 |
193
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 195 |
|
oveq2 |
⊢ ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 196 |
195
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) ) |
| 197 |
125 196
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 198 |
73 64
|
addscomd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 199 |
198
|
eqeq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 200 |
197 199
|
bitrid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 201 |
200
|
abbidv |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 202 |
194 201
|
uneq12d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 203 |
|
unidm |
⊢ ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 204 |
|
df-sn |
⊢ { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 205 |
203 204
|
eqtr4i |
⊢ ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 206 |
202 205
|
eqtrdi |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 207 |
|
oveq1 |
⊢ ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 208 |
207
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 209 |
93 208
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 210 |
209
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 211 |
210
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 212 |
|
oveq2 |
⊢ ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 213 |
212
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) ) |
| 214 |
93 213
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 215 |
73 66
|
addscomd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 216 |
215
|
eqeq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 217 |
214 216
|
bitrid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) ↔ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 218 |
217
|
abbidv |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 219 |
211 218
|
uneq12d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 220 |
|
unidm |
⊢ ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 221 |
|
df-sn |
⊢ { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } = { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 222 |
220 221
|
eqtr4i |
⊢ ( { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ 𝑎 = ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) = { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |
| 223 |
219 222
|
eqtrdi |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) = { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) |
| 224 |
206 223
|
oveq12d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( 𝑏 +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } 𝑎 = ( ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) +s 𝑏 ) } ) ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 225 |
187 189 224
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) = ( { ( ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } |s { ( ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) +s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) } ) ) |
| 226 |
2
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 2s ∈ No ) |
| 227 |
226 58 63
|
pw2divsassd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 2s ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 228 |
117 227
|
eqtr2id |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( ( ( 2s ↑s 1s ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 229 |
228 113
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑛 ) ) ) |
| 230 |
185 225 229
|
3eqtr4rd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 231 |
58 63
|
pw2divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ∈ No ) |
| 232 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 233 |
232
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → 2s ≠ 0s ) |
| 234 |
231 73 226 233
|
mulscan1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( 2s ·s ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ↔ ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) |
| 235 |
230 234
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ ℤs ∧ ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) |
| 236 |
235
|
3exp |
⊢ ( 𝑛 ∈ ℕ0s → ( 𝐴 ∈ ℤs → ( ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) → ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 237 |
236
|
a2d |
⊢ ( 𝑛 ∈ ℕ0s → ( ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑛 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) → ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) } ) ) ) ) |
| 238 |
13 22 31 40 56 237
|
n0sind |
⊢ ( 𝑁 ∈ ℕ0s → ( 𝐴 ∈ ℤs → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) ) ) |
| 239 |
238
|
impcom |
⊢ ( ( 𝐴 ∈ ℤs ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( { ( ( 𝐴 -s 1s ) /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) ) |