Metamath Proof Explorer


Theorem seqcoll

Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 2-Apr-2014)

Ref Expression
Hypotheses seqcoll.1 ( ( 𝜑𝑘𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 )
seqcoll.1b ( ( 𝜑𝑘𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 )
seqcoll.c ( ( 𝜑 ∧ ( 𝑘𝑆𝑛𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 )
seqcoll.a ( 𝜑𝑍𝑆 )
seqcoll.2 ( 𝜑𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
seqcoll.3 ( 𝜑𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
seqcoll.4 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
seqcoll.5 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
seqcoll.6 ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹𝑘 ) = 𝑍 )
seqcoll.7 ( ( 𝜑𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) )
Assertion seqcoll ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 seqcoll.1 ( ( 𝜑𝑘𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 )
2 seqcoll.1b ( ( 𝜑𝑘𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 )
3 seqcoll.c ( ( 𝜑 ∧ ( 𝑘𝑆𝑛𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 )
4 seqcoll.a ( 𝜑𝑍𝑆 )
5 seqcoll.2 ( 𝜑𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
6 seqcoll.3 ( 𝜑𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
7 seqcoll.4 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
8 seqcoll.5 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
9 seqcoll.6 ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹𝑘 ) = 𝑍 )
10 seqcoll.7 ( ( 𝜑𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) )
11 elfznn ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ℕ )
12 6 11 syl ( 𝜑𝑁 ∈ ℕ )
13 eleq1 ( 𝑦 = 1 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )
14 2fveq3 ( 𝑦 = 1 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) )
15 fveq2 ( 𝑦 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) )
16 14 15 eqeq12d ( 𝑦 = 1 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) )
17 13 16 imbi12d ( 𝑦 = 1 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) )
18 17 imbi2d ( 𝑦 = 1 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) )
19 eleq1 ( 𝑦 = 𝑚 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )
20 2fveq3 ( 𝑦 = 𝑚 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) )
21 fveq2 ( 𝑦 = 𝑚 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) )
22 20 21 eqeq12d ( 𝑦 = 𝑚 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) )
23 19 22 imbi12d ( 𝑦 = 𝑚 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) )
24 23 imbi2d ( 𝑦 = 𝑚 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) )
25 eleq1 ( 𝑦 = ( 𝑚 + 1 ) → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )
26 2fveq3 ( 𝑦 = ( 𝑚 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
27 fveq2 ( 𝑦 = ( 𝑚 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) )
28 26 27 eqeq12d ( 𝑦 = ( 𝑚 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) )
29 25 28 imbi12d ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) )
30 29 imbi2d ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) )
31 eleq1 ( 𝑦 = 𝑁 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )
32 2fveq3 ( 𝑦 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) )
33 fveq2 ( 𝑦 = 𝑁 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) )
34 32 33 eqeq12d ( 𝑦 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) )
35 31 34 imbi12d ( 𝑦 = 𝑁 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) )
36 35 imbi2d ( 𝑦 = 𝑁 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) )
37 isof1o ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
38 5 37 syl ( 𝜑𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
39 f1of ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
40 38 39 syl ( 𝜑𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
41 elfzuz2 ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) )
42 6 41 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) )
43 eluzfz1 ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
44 42 43 syl ( 𝜑 → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
45 40 44 ffvelrnd ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝐴 )
46 7 45 sseldd ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) )
47 eluzle ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) → 1 ≤ ( ♯ ‘ 𝐴 ) )
48 42 47 syl ( 𝜑 → 1 ≤ ( ♯ ‘ 𝐴 ) )
49 fzssz ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℤ
50 zssre ℤ ⊆ ℝ
51 49 50 sstri ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ
52 51 a1i ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ )
53 ressxr ℝ ⊆ ℝ*
54 52 53 sstrdi ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* )
55 eluzelre ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ℝ )
56 55 ssriv ( ℤ𝑀 ) ⊆ ℝ
57 7 56 sstrdi ( 𝜑𝐴 ⊆ ℝ )
58 57 53 sstrdi ( 𝜑𝐴 ⊆ ℝ* )
59 eluzfz2 ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
60 42 59 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
61 leisorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ*𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
62 5 54 58 44 60 61 syl122anc ( 𝜑 → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
63 48 62 mpbid ( 𝜑 → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )
64 40 60 ffvelrnd ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 )
65 7 64 sseldd ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑀 ) )
66 eluzelz ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ )
67 65 66 syl ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ )
68 elfz5 ( ( ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
69 46 67 68 syl2anc ( 𝜑 → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
70 63 69 mpbird ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
71 fveq2 ( 𝑘 = ( 𝐺 ‘ 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) )
72 71 eleq1d ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝐹𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) )
73 72 imbi2d ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝜑 → ( 𝐹𝑘 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) )
74 8 expcom ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹𝑘 ) ∈ 𝑆 ) )
75 73 74 vtoclga ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) )
76 70 75 mpcom ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 )
77 eluzelz ( ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ )
78 46 77 syl ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ )
79 peano2zm ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ )
80 78 79 syl ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ )
81 80 zred ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℝ )
82 78 zred ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℝ )
83 67 zred ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ )
84 82 lem1d ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ 1 ) )
85 81 82 83 84 63 letrd ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )
86 eluz ( ( ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
87 80 67 86 syl2anc ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
88 85 87 mpbird ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) )
89 fzss2 ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
90 88 89 syl ( 𝜑 → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
91 90 sselda ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
92 eluzel2 ( ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
93 46 92 syl ( 𝜑𝑀 ∈ ℤ )
94 elfzm11 ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < ( 𝐺 ‘ 1 ) ) ) )
95 93 78 94 syl2anc ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < ( 𝐺 ‘ 1 ) ) ) )
96 simp3 ( ( 𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < ( 𝐺 ‘ 1 ) ) → 𝑘 < ( 𝐺 ‘ 1 ) )
97 82 adantr ( ( 𝜑𝑘𝐴 ) → ( 𝐺 ‘ 1 ) ∈ ℝ )
98 57 sselda ( ( 𝜑𝑘𝐴 ) → 𝑘 ∈ ℝ )
99 f1ocnv ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
100 38 99 syl ( 𝜑 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
101 f1of ( 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
102 100 101 syl ( 𝜑 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
103 102 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
104 elfznn ( ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℕ )
105 103 104 syl ( ( 𝜑𝑘𝐴 ) → ( 𝐺𝑘 ) ∈ ℕ )
106 105 nnge1d ( ( 𝜑𝑘𝐴 ) → 1 ≤ ( 𝐺𝑘 ) )
107 5 adantr ( ( 𝜑𝑘𝐴 ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
108 54 adantr ( ( 𝜑𝑘𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* )
109 58 adantr ( ( 𝜑𝑘𝐴 ) → 𝐴 ⊆ ℝ* )
110 44 adantr ( ( 𝜑𝑘𝐴 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
111 leisorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ*𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( 𝐺𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
112 107 108 109 110 103 111 syl122anc ( ( 𝜑𝑘𝐴 ) → ( 1 ≤ ( 𝐺𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
113 106 112 mpbid ( ( 𝜑𝑘𝐴 ) → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( 𝐺𝑘 ) ) )
114 f1ocnvfv2 ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑘𝐴 ) → ( 𝐺 ‘ ( 𝐺𝑘 ) ) = 𝑘 )
115 38 114 sylan ( ( 𝜑𝑘𝐴 ) → ( 𝐺 ‘ ( 𝐺𝑘 ) ) = 𝑘 )
116 113 115 breqtrd ( ( 𝜑𝑘𝐴 ) → ( 𝐺 ‘ 1 ) ≤ 𝑘 )
117 97 98 116 lensymd ( ( 𝜑𝑘𝐴 ) → ¬ 𝑘 < ( 𝐺 ‘ 1 ) )
118 117 ex ( 𝜑 → ( 𝑘𝐴 → ¬ 𝑘 < ( 𝐺 ‘ 1 ) ) )
119 118 con2d ( 𝜑 → ( 𝑘 < ( 𝐺 ‘ 1 ) → ¬ 𝑘𝐴 ) )
120 96 119 syl5 ( 𝜑 → ( ( 𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < ( 𝐺 ‘ 1 ) ) → ¬ 𝑘𝐴 ) )
121 95 120 sylbid ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) → ¬ 𝑘𝐴 ) )
122 121 imp ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ¬ 𝑘𝐴 )
123 91 122 eldifd ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) )
124 123 9 syldan ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ( 𝐹𝑘 ) = 𝑍 )
125 1 4 46 76 124 seqid ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) = seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) )
126 125 fveq1d ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) )
127 uzid ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( 𝐺 ‘ 1 ) ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) )
128 78 127 syl ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) )
129 128 fvresd ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) )
130 seq1 ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) )
131 78 130 syl ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) )
132 fveq2 ( 𝑛 = 1 → ( 𝐻𝑛 ) = ( 𝐻 ‘ 1 ) )
133 2fveq3 ( 𝑛 = 1 → ( 𝐹 ‘ ( 𝐺𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) )
134 132 133 eqeq12d ( 𝑛 = 1 → ( ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) ↔ ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) )
135 134 imbi2d ( 𝑛 = 1 → ( ( 𝜑 → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) )
136 10 expcom ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) ) )
137 135 136 vtoclga ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) )
138 44 137 mpcom ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) )
139 131 138 eqtr4d ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) )
140 126 129 139 3eqtr3d ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) )
141 1z 1 ∈ ℤ
142 seq1 ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) )
143 141 142 ax-mp ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 )
144 140 143 syl6eqr ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) )
145 144 a1d ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) )
146 simplr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ )
147 nnuz ℕ = ( ℤ ‘ 1 )
148 146 147 eleqtrdi ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( ℤ ‘ 1 ) )
149 nnz ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ )
150 149 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ )
151 elfzuz3 ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) )
152 151 adantl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) )
153 peano2uzr ( ( 𝑚 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ ( 𝑚 + 1 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ𝑚 ) )
154 150 152 153 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ𝑚 ) )
155 elfzuzb ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ( ℤ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ𝑚 ) ) )
156 148 154 155 sylanbrc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
157 156 ex ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )
158 157 imim1d ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) )
159 oveq1 ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) )
160 2 ad4ant14 ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 )
161 7 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ𝑀 ) )
162 40 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
163 162 156 ffvelrnd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺𝑚 ) ∈ 𝐴 )
164 161 163 sseldd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺𝑚 ) ∈ ( ℤ𝑀 ) )
165 nnre ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ )
166 165 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℝ )
167 166 ltp1d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 < ( 𝑚 + 1 ) )
168 5 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
169 simpr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
170 isorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
171 168 156 169 170 syl12anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
172 167 171 mpbid ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) )
173 eluzelz ( ( 𝐺𝑚 ) ∈ ( ℤ𝑀 ) → ( 𝐺𝑚 ) ∈ ℤ )
174 164 173 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺𝑚 ) ∈ ℤ )
175 162 169 ffvelrnd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 )
176 161 175 sseldd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ𝑀 ) )
177 eluzelz ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ𝑀 ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ )
178 176 177 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ )
179 zltlem1 ( ( ( 𝐺𝑚 ) ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
180 174 178 179 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
181 172 180 mpbid ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) )
182 peano2zm ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ )
183 178 182 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ )
184 eluz ( ( ( 𝐺𝑚 ) ∈ ℤ ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) ↔ ( 𝐺𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
185 174 183 184 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) ↔ ( 𝐺𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
186 181 185 mpbird ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) )
187 183 zred ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℝ )
188 178 zred ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℝ )
189 83 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ )
190 188 lem1d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( 𝑚 + 1 ) ) )
191 elfzle2 ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) )
192 191 adantl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) )
193 54 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* )
194 58 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ℝ* )
195 60 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
196 leisorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ*𝐴 ⊆ ℝ* ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
197 168 193 194 169 195 196 syl122anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
198 192 197 mpbid ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )
199 187 188 189 190 198 letrd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )
200 67 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ )
201 eluz ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
202 183 200 201 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
203 199 202 mpbird ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
204 uztrn ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) )
205 203 186 204 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) )
206 fzss2 ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) → ( 𝑀 ... ( 𝐺𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
207 205 206 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
208 207 sselda ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺𝑚 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
209 8 ad4ant14 ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
210 208 209 syldan ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺𝑚 ) ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
211 3 ad4ant14 ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝑘𝑆𝑛𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 )
212 164 210 211 seqcl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) ∈ 𝑆 )
213 simplll ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝜑 )
214 elfzuz ( 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ ‘ ( ( 𝐺𝑚 ) + 1 ) ) )
215 peano2uz ( ( 𝐺𝑚 ) ∈ ( ℤ𝑀 ) → ( ( 𝐺𝑚 ) + 1 ) ∈ ( ℤ𝑀 ) )
216 164 215 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺𝑚 ) + 1 ) ∈ ( ℤ𝑀 ) )
217 uztrn ( ( 𝑘 ∈ ( ℤ ‘ ( ( 𝐺𝑚 ) + 1 ) ) ∧ ( ( 𝐺𝑚 ) + 1 ) ∈ ( ℤ𝑀 ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
218 214 216 217 syl2anr ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
219 elfzuz3 ( 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ𝑘 ) )
220 uztrn ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ𝑘 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑘 ) )
221 203 219 220 syl2an ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑘 ) )
222 elfzuzb ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑘 ∈ ( ℤ𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑘 ) ) )
223 218 221 222 sylanbrc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
224 149 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝑚 ∈ ℤ )
225 102 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
226 simprr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝑘𝐴 )
227 225 226 ffvelrnd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
228 elfzelz ( ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℤ )
229 227 228 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℤ )
230 btwnnz ( ( 𝑚 ∈ ℤ ∧ 𝑚 < ( 𝐺𝑘 ) ∧ ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( 𝐺𝑘 ) ∈ ℤ )
231 230 3expib ( 𝑚 ∈ ℤ → ( ( 𝑚 < ( 𝐺𝑘 ) ∧ ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( 𝐺𝑘 ) ∈ ℤ ) )
232 231 con2d ( 𝑚 ∈ ℤ → ( ( 𝐺𝑘 ) ∈ ℤ → ¬ ( 𝑚 < ( 𝐺𝑘 ) ∧ ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ) ) )
233 224 229 232 sylc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ¬ ( 𝑚 < ( 𝐺𝑘 ) ∧ ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ) )
234 5 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
235 156 adantrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
236 isorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( 𝐺𝑘 ) ↔ ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
237 234 235 227 236 syl12anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝑚 < ( 𝐺𝑘 ) ↔ ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
238 38 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
239 238 226 114 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝐺 ‘ ( 𝐺𝑘 ) ) = 𝑘 )
240 239 breq2d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺𝑚 ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ↔ ( 𝐺𝑚 ) < 𝑘 ) )
241 174 adantrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑚 ) ∈ ℤ )
242 7 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝐴 ⊆ ( ℤ𝑀 ) )
243 242 226 sseldd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
244 eluzelz ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ℤ )
245 243 244 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → 𝑘 ∈ ℤ )
246 zltp1le ( ( ( 𝐺𝑚 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝐺𝑚 ) < 𝑘 ↔ ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘 ) )
247 241 245 246 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺𝑚 ) < 𝑘 ↔ ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘 ) )
248 237 240 247 3bitrd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝑚 < ( 𝐺𝑘 ) ↔ ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘 ) )
249 169 adantrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
250 isorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( 𝐺𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
251 234 227 249 250 syl12anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( 𝐺𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
252 239 breq1d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺 ‘ ( 𝐺𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
253 178 adantrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ )
254 zltlem1 ( ( 𝑘 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
255 245 253 254 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
256 251 252 255 3bitrd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
257 248 256 anbi12d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ( ( 𝑚 < ( 𝐺𝑘 ) ∧ ( 𝐺𝑘 ) < ( 𝑚 + 1 ) ) ↔ ( ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) )
258 233 257 mtbid ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘𝐴 ) ) → ¬ ( ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
259 258 expr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑘𝐴 → ¬ ( ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) )
260 259 con2d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ¬ 𝑘𝐴 ) )
261 elfzle1 ( 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘 )
262 elfzle2 ( 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) )
263 261 262 jca ( 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( ( 𝐺𝑚 ) + 1 ) ≤ 𝑘𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
264 260 263 impel ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ¬ 𝑘𝐴 )
265 223 264 eldifd ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) )
266 213 265 9 syl2anc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐹𝑘 ) = 𝑍 )
267 160 164 186 212 266 seqid2 ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) )
268 267 oveq1d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
269 fveq2 ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐻𝑛 ) = ( 𝐻 ‘ ( 𝑚 + 1 ) ) )
270 2fveq3 ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝐺𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
271 269 270 eqeq12d ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) ↔ ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
272 271 imbi2d ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) )
273 272 136 vtoclga ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
274 273 impcom ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
275 274 adantlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) )
276 275 oveq2d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
277 93 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑀 ∈ ℤ )
278 178 zcnd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ )
279 ax-1cn 1 ∈ ℂ
280 npcan ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) )
281 278 279 280 sylancl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) )
282 uztrn ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ ‘ ( 𝐺𝑚 ) ) ∧ ( 𝐺𝑚 ) ∈ ( ℤ𝑀 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ𝑀 ) )
283 186 164 282 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ𝑀 ) )
284 eluzp1p1 ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ𝑀 ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
285 283 284 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
286 281 285 eqeltrrd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
287 seqm1 ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
288 277 286 287 syl2anc ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) )
289 268 276 288 3eqtr4rd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) )
290 seqp1 ( 𝑚 ∈ ( ℤ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) )
291 148 290 syl ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) )
292 289 291 eqeq12d ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) )
293 159 292 syl5ibr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) )
294 293 ex ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) )
295 294 a2d ( ( 𝜑𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) )
296 158 295 syld ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) )
297 296 expcom ( 𝑚 ∈ ℕ → ( 𝜑 → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) )
298 297 a2d ( 𝑚 ∈ ℕ → ( ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) )
299 18 24 30 36 145 298 nnind ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) )
300 12 299 mpcom ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) )
301 6 300 mpd ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) )