Step |
Hyp |
Ref |
Expression |
1 |
|
crctcshwlkn0lem.s |
|- ( ph -> S e. ( 1 ..^ N ) ) |
2 |
|
crctcshwlkn0lem.q |
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
3 |
|
crctcshwlkn0lem.h |
|- H = ( F cyclShift S ) |
4 |
|
crctcshwlkn0lem.n |
|- N = ( # ` F ) |
5 |
|
crctcshwlkn0lem.f |
|- ( ph -> F e. Word A ) |
6 |
|
crctcshwlkn0lem.p |
|- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
7 |
|
elfzoelz |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. ZZ ) |
8 |
7
|
zcnd |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. CC ) |
9 |
8
|
adantl |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. CC ) |
10 |
|
1cnd |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> 1 e. CC ) |
11 |
|
elfzoelz |
|- ( S e. ( 1 ..^ N ) -> S e. ZZ ) |
12 |
11
|
zcnd |
|- ( S e. ( 1 ..^ N ) -> S e. CC ) |
13 |
12
|
adantr |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. CC ) |
14 |
|
elfzoel2 |
|- ( S e. ( 1 ..^ N ) -> N e. ZZ ) |
15 |
14
|
zcnd |
|- ( S e. ( 1 ..^ N ) -> N e. CC ) |
16 |
15
|
adantr |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. CC ) |
17 |
9 10 13 16
|
2addsubd |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + 1 ) + S ) - N ) = ( ( ( j + S ) - N ) + 1 ) ) |
18 |
17
|
eqcomd |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) |
19 |
|
elfzo1 |
|- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
20 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
21 |
20
|
3ad2ant2 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. ZZ ) |
22 |
21
|
adantr |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. ZZ ) |
23 |
7
|
adantl |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ZZ ) |
24 |
|
nnz |
|- ( S e. NN -> S e. ZZ ) |
25 |
24
|
3ad2ant1 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. ZZ ) |
26 |
25
|
adantr |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. ZZ ) |
27 |
23 26
|
zaddcld |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( j + S ) e. ZZ ) |
28 |
|
elfzo2 |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) <-> ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) |
29 |
|
eluz2 |
|- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) <-> ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) ) |
30 |
|
zre |
|- ( j e. ZZ -> j e. RR ) |
31 |
|
nnre |
|- ( S e. NN -> S e. RR ) |
32 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
33 |
31 32
|
anim12i |
|- ( ( S e. NN /\ N e. NN ) -> ( S e. RR /\ N e. RR ) ) |
34 |
|
simplr |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> N e. RR ) |
35 |
|
simpll |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> S e. RR ) |
36 |
34 35
|
resubcld |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( N - S ) e. RR ) |
37 |
36
|
lep1d |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( N - S ) <_ ( ( N - S ) + 1 ) ) |
38 |
|
1red |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> 1 e. RR ) |
39 |
36 38
|
readdcld |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( N - S ) + 1 ) e. RR ) |
40 |
|
simpr |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> j e. RR ) |
41 |
|
letr |
|- ( ( ( N - S ) e. RR /\ ( ( N - S ) + 1 ) e. RR /\ j e. RR ) -> ( ( ( N - S ) <_ ( ( N - S ) + 1 ) /\ ( ( N - S ) + 1 ) <_ j ) -> ( N - S ) <_ j ) ) |
42 |
36 39 40 41
|
syl3anc |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) <_ ( ( N - S ) + 1 ) /\ ( ( N - S ) + 1 ) <_ j ) -> ( N - S ) <_ j ) ) |
43 |
37 42
|
mpand |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) + 1 ) <_ j -> ( N - S ) <_ j ) ) |
44 |
34 35 40
|
lesubaddd |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( N - S ) <_ j <-> N <_ ( j + S ) ) ) |
45 |
43 44
|
sylibd |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) |
46 |
45
|
ex |
|- ( ( S e. RR /\ N e. RR ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
47 |
33 46
|
syl |
|- ( ( S e. NN /\ N e. NN ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
48 |
47
|
3adant3 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
49 |
30 48
|
syl5com |
|- ( j e. ZZ -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
50 |
49
|
com23 |
|- ( j e. ZZ -> ( ( ( N - S ) + 1 ) <_ j -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) ) |
51 |
50
|
imp |
|- ( ( j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
52 |
51
|
3adant1 |
|- ( ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
53 |
29 52
|
sylbi |
|- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
54 |
53
|
3ad2ant1 |
|- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
55 |
54
|
com12 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> N <_ ( j + S ) ) ) |
56 |
28 55
|
syl5bi |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> N <_ ( j + S ) ) ) |
57 |
56
|
imp |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N <_ ( j + S ) ) |
58 |
|
eluz2 |
|- ( ( j + S ) e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ ( j + S ) e. ZZ /\ N <_ ( j + S ) ) ) |
59 |
22 27 57 58
|
syl3anbrc |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( j + S ) e. ( ZZ>= ` N ) ) |
60 |
|
uznn0sub |
|- ( ( j + S ) e. ( ZZ>= ` N ) -> ( ( j + S ) - N ) e. NN0 ) |
61 |
59 60
|
syl |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) e. NN0 ) |
62 |
|
simpl2 |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. NN ) |
63 |
30
|
adantl |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> j e. RR ) |
64 |
|
simpll |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> S e. RR ) |
65 |
|
ax-1 |
|- ( N e. RR -> ( S e. RR -> N e. RR ) ) |
66 |
65
|
imdistanri |
|- ( ( S e. RR /\ N e. RR ) -> ( N e. RR /\ N e. RR ) ) |
67 |
66
|
adantr |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( N e. RR /\ N e. RR ) ) |
68 |
|
lt2add |
|- ( ( ( j e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) -> ( ( j < N /\ S < N ) -> ( j + S ) < ( N + N ) ) ) |
69 |
63 64 67 68
|
syl21anc |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( j < N /\ S < N ) -> ( j + S ) < ( N + N ) ) ) |
70 |
63 64
|
readdcld |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( j + S ) e. RR ) |
71 |
|
simplr |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> N e. RR ) |
72 |
70 71 71
|
ltsubaddd |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( ( j + S ) - N ) < N <-> ( j + S ) < ( N + N ) ) ) |
73 |
69 72
|
sylibrd |
|- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( j < N /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
74 |
73
|
ex |
|- ( ( S e. RR /\ N e. RR ) -> ( j e. ZZ -> ( ( j < N /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
75 |
74
|
com23 |
|- ( ( S e. RR /\ N e. RR ) -> ( ( j < N /\ S < N ) -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) |
76 |
75
|
expcomd |
|- ( ( S e. RR /\ N e. RR ) -> ( S < N -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) ) |
77 |
33 76
|
syl |
|- ( ( S e. NN /\ N e. NN ) -> ( S < N -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) ) |
78 |
77
|
3impia |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) |
79 |
78
|
com13 |
|- ( j e. ZZ -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
80 |
79
|
3ad2ant2 |
|- ( ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
81 |
29 80
|
sylbi |
|- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
82 |
81
|
imp |
|- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
83 |
82
|
3adant2 |
|- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
84 |
28 83
|
sylbi |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
85 |
84
|
impcom |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) < N ) |
86 |
61 62 85
|
3jca |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
87 |
19 86
|
sylanb |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
88 |
|
elfzo0 |
|- ( ( ( j + S ) - N ) e. ( 0 ..^ N ) <-> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
89 |
87 88
|
sylibr |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) e. ( 0 ..^ N ) ) |
90 |
89
|
adantr |
|- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( ( j + S ) - N ) e. ( 0 ..^ N ) ) |
91 |
|
fveq2 |
|- ( i = ( ( j + S ) - N ) -> ( P ` i ) = ( P ` ( ( j + S ) - N ) ) ) |
92 |
91
|
adantl |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( P ` i ) = ( P ` ( ( j + S ) - N ) ) ) |
93 |
|
fvoveq1 |
|- ( i = ( ( j + S ) - N ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( j + S ) - N ) + 1 ) ) ) |
94 |
|
simpr |
|- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) |
95 |
94
|
fveq2d |
|- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( P ` ( ( ( j + S ) - N ) + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
96 |
93 95
|
sylan9eqr |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
97 |
92 96
|
eqeq12d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( ( P ` i ) = ( P ` ( i + 1 ) ) <-> ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) ) |
98 |
|
2fveq3 |
|- ( i = ( ( j + S ) - N ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
99 |
91
|
sneqd |
|- ( i = ( ( j + S ) - N ) -> { ( P ` i ) } = { ( P ` ( ( j + S ) - N ) ) } ) |
100 |
98 99
|
eqeq12d |
|- ( i = ( ( j + S ) - N ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
101 |
100
|
adantl |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
102 |
92 96
|
preq12d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } ) |
103 |
|
simpr |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> i = ( ( j + S ) - N ) ) |
104 |
103
|
fveq2d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( F ` i ) = ( F ` ( ( j + S ) - N ) ) ) |
105 |
104
|
fveq2d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
106 |
102 105
|
sseq12d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) <-> { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
107 |
97 101 106
|
ifpbi123d |
|- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
108 |
90 107
|
rspcdv |
|- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
109 |
18 108
|
mpdan |
|- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
110 |
1 109
|
sylan |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
111 |
110
|
ex |
|- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) ) |
112 |
6 111
|
mpid |
|- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
113 |
112
|
imp |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
114 |
|
elfzofz |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. ( ( ( N - S ) + 1 ) ... N ) ) |
115 |
1 2
|
crctcshwlkn0lem3 |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
116 |
114 115
|
sylan2 |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
117 |
|
fzofzp1 |
|- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( j + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
118 |
1 2
|
crctcshwlkn0lem3 |
|- ( ( ph /\ ( j + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
119 |
117 118
|
sylan2 |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
120 |
3
|
fveq1i |
|- ( H ` j ) = ( ( F cyclShift S ) ` j ) |
121 |
5
|
adantr |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> F e. Word A ) |
122 |
1 11
|
syl |
|- ( ph -> S e. ZZ ) |
123 |
122
|
adantr |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. ZZ ) |
124 |
|
ltle |
|- ( ( S e. RR /\ N e. RR ) -> ( S < N -> S <_ N ) ) |
125 |
33 124
|
syl |
|- ( ( S e. NN /\ N e. NN ) -> ( S < N -> S <_ N ) ) |
126 |
125
|
3impia |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> S <_ N ) |
127 |
|
nnnn0 |
|- ( S e. NN -> S e. NN0 ) |
128 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
129 |
127 128
|
anim12i |
|- ( ( S e. NN /\ N e. NN ) -> ( S e. NN0 /\ N e. NN0 ) ) |
130 |
129
|
3adant3 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S e. NN0 /\ N e. NN0 ) ) |
131 |
|
nn0sub |
|- ( ( S e. NN0 /\ N e. NN0 ) -> ( S <_ N <-> ( N - S ) e. NN0 ) ) |
132 |
130 131
|
syl |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S <_ N <-> ( N - S ) e. NN0 ) ) |
133 |
126 132
|
mpbid |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) |
134 |
19 133
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( N - S ) e. NN0 ) |
135 |
|
1nn0 |
|- 1 e. NN0 |
136 |
135
|
a1i |
|- ( S e. ( 1 ..^ N ) -> 1 e. NN0 ) |
137 |
134 136
|
nn0addcld |
|- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. NN0 ) |
138 |
|
elnn0uz |
|- ( ( ( N - S ) + 1 ) e. NN0 <-> ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) ) |
139 |
137 138
|
sylib |
|- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) ) |
140 |
|
fzoss1 |
|- ( ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( N - S ) + 1 ) ..^ N ) C_ ( 0 ..^ N ) ) |
141 |
1 139 140
|
3syl |
|- ( ph -> ( ( ( N - S ) + 1 ) ..^ N ) C_ ( 0 ..^ N ) ) |
142 |
141
|
sselda |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ( 0 ..^ N ) ) |
143 |
4
|
oveq2i |
|- ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) |
144 |
142 143
|
eleqtrdi |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) |
145 |
|
cshwidxmod |
|- ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
146 |
121 123 144 145
|
syl3anc |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
147 |
4
|
eqcomi |
|- ( # ` F ) = N |
148 |
147
|
oveq2i |
|- ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) mod N ) |
149 |
|
eluzelre |
|- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> j e. RR ) |
150 |
149
|
3ad2ant1 |
|- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> j e. RR ) |
151 |
150
|
adantl |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> j e. RR ) |
152 |
31
|
3ad2ant1 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. RR ) |
153 |
152
|
adantr |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> S e. RR ) |
154 |
151 153
|
readdcld |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( j + S ) e. RR ) |
155 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
156 |
155
|
3ad2ant2 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. RR+ ) |
157 |
156
|
adantr |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N e. RR+ ) |
158 |
54
|
impcom |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N <_ ( j + S ) ) |
159 |
157
|
rpred |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N e. RR ) |
160 |
|
simpr3 |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> j < N ) |
161 |
|
simpl3 |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> S < N ) |
162 |
151 153 159 160 161
|
lt2addmuld |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( j + S ) < ( 2 x. N ) ) |
163 |
158 162
|
jca |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) |
164 |
154 157 163
|
jca31 |
|- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) |
165 |
164
|
ex |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
166 |
28 165
|
syl5bi |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
167 |
19 166
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
168 |
1 167
|
syl |
|- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
169 |
168
|
imp |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) |
170 |
|
2submod |
|- ( ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) -> ( ( j + S ) mod N ) = ( ( j + S ) - N ) ) |
171 |
169 170
|
syl |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) mod N ) = ( ( j + S ) - N ) ) |
172 |
148 171
|
eqtrid |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) - N ) ) |
173 |
172
|
fveq2d |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( F ` ( ( j + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) - N ) ) ) |
174 |
146 173
|
eqtrd |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) - N ) ) ) |
175 |
120 174
|
eqtrid |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( H ` j ) = ( F ` ( ( j + S ) - N ) ) ) |
176 |
175
|
fveq2d |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
177 |
|
simp1 |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
178 |
|
simp2 |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
179 |
177 178
|
eqeq12d |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( ( Q ` j ) = ( Q ` ( j + 1 ) ) <-> ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) ) |
180 |
|
simp3 |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
181 |
177
|
sneqd |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> { ( Q ` j ) } = { ( P ` ( ( j + S ) - N ) ) } ) |
182 |
180 181
|
eqeq12d |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( ( I ` ( H ` j ) ) = { ( Q ` j ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
183 |
177 178
|
preq12d |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> { ( Q ` j ) , ( Q ` ( j + 1 ) ) } = { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } ) |
184 |
183 180
|
sseq12d |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) <-> { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
185 |
179 182 184
|
ifpbi123d |
|- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
186 |
116 119 176 185
|
syl3anc |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
187 |
113 186
|
mpbird |
|- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
188 |
187
|
ralrimiva |
|- ( ph -> A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |