Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
|- T = seq 1 ( + , G ) |
2 |
|
ovoliun.g |
|- G = ( n e. NN |-> ( vol* ` A ) ) |
3 |
|
ovoliun.a |
|- ( ( ph /\ n e. NN ) -> A C_ RR ) |
4 |
|
ovoliun.v |
|- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
5 |
|
ovoliun.r |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
6 |
|
ovoliun.b |
|- ( ph -> B e. RR+ ) |
7 |
|
ovoliun.s |
|- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
8 |
|
ovoliun.u |
|- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
9 |
|
ovoliun.h |
|- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
10 |
|
ovoliun.j |
|- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
11 |
|
ovoliun.f |
|- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
12 |
|
ovoliun.x1 |
|- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
13 |
|
ovoliun.x2 |
|- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
14 |
3
|
ralrimiva |
|- ( ph -> A. n e. NN A C_ RR ) |
15 |
|
iunss |
|- ( U_ n e. NN A C_ RR <-> A. n e. NN A C_ RR ) |
16 |
14 15
|
sylibr |
|- ( ph -> U_ n e. NN A C_ RR ) |
17 |
|
ovolcl |
|- ( U_ n e. NN A C_ RR -> ( vol* ` U_ n e. NN A ) e. RR* ) |
18 |
16 17
|
syl |
|- ( ph -> ( vol* ` U_ n e. NN A ) e. RR* ) |
19 |
11
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
20 |
|
f1of |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) |
21 |
10 20
|
syl |
|- ( ph -> J : NN --> ( NN X. NN ) ) |
22 |
21
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) |
23 |
|
xp1st |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
24 |
22 23
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
25 |
19 24
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
26 |
|
elovolmlem |
|- ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
27 |
25 26
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
28 |
|
xp2nd |
|- ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
29 |
22 28
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
30 |
27 29
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
31 |
30 9
|
fmptd |
|- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
32 |
|
eqid |
|- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
33 |
32 8
|
ovolsf |
|- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) |
34 |
|
frn |
|- ( U : NN --> ( 0 [,) +oo ) -> ran U C_ ( 0 [,) +oo ) ) |
35 |
31 33 34
|
3syl |
|- ( ph -> ran U C_ ( 0 [,) +oo ) ) |
36 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
37 |
35 36
|
sstrdi |
|- ( ph -> ran U C_ RR* ) |
38 |
|
supxrcl |
|- ( ran U C_ RR* -> sup ( ran U , RR* , < ) e. RR* ) |
39 |
37 38
|
syl |
|- ( ph -> sup ( ran U , RR* , < ) e. RR* ) |
40 |
6
|
rpred |
|- ( ph -> B e. RR ) |
41 |
5 40
|
readdcld |
|- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) |
42 |
41
|
rexrd |
|- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR* ) |
43 |
|
eliun |
|- ( z e. U_ n e. NN A <-> E. n e. NN z e. A ) |
44 |
12
|
3adant3 |
|- ( ( ph /\ n e. NN /\ z e. A ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
45 |
3
|
3adant3 |
|- ( ( ph /\ n e. NN /\ z e. A ) -> A C_ RR ) |
46 |
11
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
47 |
|
elovolmlem |
|- ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
48 |
46 47
|
sylib |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
49 |
48
|
3adant3 |
|- ( ( ph /\ n e. NN /\ z e. A ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
50 |
|
ovolfioo |
|- ( ( A C_ RR /\ ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
51 |
45 49 50
|
syl2anc |
|- ( ( ph /\ n e. NN /\ z e. A ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
52 |
44 51
|
mpbid |
|- ( ( ph /\ n e. NN /\ z e. A ) -> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
53 |
|
simp3 |
|- ( ( ph /\ n e. NN /\ z e. A ) -> z e. A ) |
54 |
|
rsp |
|- ( A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( z e. A -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
55 |
52 53 54
|
sylc |
|- ( ( ph /\ n e. NN /\ z e. A ) -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
56 |
|
simpl1 |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ph ) |
57 |
|
f1ocnv |
|- ( J : NN -1-1-onto-> ( NN X. NN ) -> `' J : ( NN X. NN ) -1-1-onto-> NN ) |
58 |
|
f1of |
|- ( `' J : ( NN X. NN ) -1-1-onto-> NN -> `' J : ( NN X. NN ) --> NN ) |
59 |
56 10 57 58
|
4syl |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> `' J : ( NN X. NN ) --> NN ) |
60 |
|
simpl2 |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> n e. NN ) |
61 |
|
simpr |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> j e. NN ) |
62 |
59 60 61
|
fovrnd |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( n `' J j ) e. NN ) |
63 |
|
2fveq3 |
|- ( k = ( n `' J j ) -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` ( n `' J j ) ) ) ) |
64 |
63
|
fveq2d |
|- ( k = ( n `' J j ) -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ) |
65 |
|
2fveq3 |
|- ( k = ( n `' J j ) -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` ( n `' J j ) ) ) ) |
66 |
64 65
|
fveq12d |
|- ( k = ( n `' J j ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
67 |
|
fvex |
|- ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) e. _V |
68 |
66 9 67
|
fvmpt |
|- ( ( n `' J j ) e. NN -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
69 |
62 68
|
syl |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
70 |
|
df-ov |
|- ( n `' J j ) = ( `' J ` <. n , j >. ) |
71 |
70
|
fveq2i |
|- ( J ` ( n `' J j ) ) = ( J ` ( `' J ` <. n , j >. ) ) |
72 |
56 10
|
syl |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> J : NN -1-1-onto-> ( NN X. NN ) ) |
73 |
60 61
|
opelxpd |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> <. n , j >. e. ( NN X. NN ) ) |
74 |
|
f1ocnvfv2 |
|- ( ( J : NN -1-1-onto-> ( NN X. NN ) /\ <. n , j >. e. ( NN X. NN ) ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) |
75 |
72 73 74
|
syl2anc |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) |
76 |
71 75
|
eqtrid |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( n `' J j ) ) = <. n , j >. ) |
77 |
76
|
fveq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = ( 1st ` <. n , j >. ) ) |
78 |
|
vex |
|- n e. _V |
79 |
|
vex |
|- j e. _V |
80 |
78 79
|
op1st |
|- ( 1st ` <. n , j >. ) = n |
81 |
77 80
|
eqtrdi |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = n ) |
82 |
81
|
fveq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) = ( F ` n ) ) |
83 |
76
|
fveq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = ( 2nd ` <. n , j >. ) ) |
84 |
78 79
|
op2nd |
|- ( 2nd ` <. n , j >. ) = j |
85 |
83 84
|
eqtrdi |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = j ) |
86 |
82 85
|
fveq12d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) = ( ( F ` n ) ` j ) ) |
87 |
69 86
|
eqtrd |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` n ) ` j ) ) |
88 |
87
|
fveq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( H ` ( n `' J j ) ) ) = ( 1st ` ( ( F ` n ) ` j ) ) ) |
89 |
88
|
breq1d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z <-> ( 1st ` ( ( F ` n ) ` j ) ) < z ) ) |
90 |
87
|
fveq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( H ` ( n `' J j ) ) ) = ( 2nd ` ( ( F ` n ) ` j ) ) ) |
91 |
90
|
breq2d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( z < ( 2nd ` ( H ` ( n `' J j ) ) ) <-> z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
92 |
89 91
|
anbi12d |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) <-> ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
93 |
92
|
biimprd |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) |
94 |
|
2fveq3 |
|- ( m = ( n `' J j ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( H ` ( n `' J j ) ) ) ) |
95 |
94
|
breq1d |
|- ( m = ( n `' J j ) -> ( ( 1st ` ( H ` m ) ) < z <-> ( 1st ` ( H ` ( n `' J j ) ) ) < z ) ) |
96 |
|
2fveq3 |
|- ( m = ( n `' J j ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( H ` ( n `' J j ) ) ) ) |
97 |
96
|
breq2d |
|- ( m = ( n `' J j ) -> ( z < ( 2nd ` ( H ` m ) ) <-> z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) |
98 |
95 97
|
anbi12d |
|- ( m = ( n `' J j ) -> ( ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) <-> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) |
99 |
98
|
rspcev |
|- ( ( ( n `' J j ) e. NN /\ ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
100 |
62 93 99
|
syl6an |
|- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
101 |
100
|
rexlimdva |
|- ( ( ph /\ n e. NN /\ z e. A ) -> ( E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
102 |
55 101
|
mpd |
|- ( ( ph /\ n e. NN /\ z e. A ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
103 |
102
|
rexlimdv3a |
|- ( ph -> ( E. n e. NN z e. A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
104 |
43 103
|
syl5bi |
|- ( ph -> ( z e. U_ n e. NN A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
105 |
104
|
ralrimiv |
|- ( ph -> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
106 |
|
ovolfioo |
|- ( ( U_ n e. NN A C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
107 |
16 31 106
|
syl2anc |
|- ( ph -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
108 |
105 107
|
mpbird |
|- ( ph -> U_ n e. NN A C_ U. ran ( (,) o. H ) ) |
109 |
8
|
ovollb |
|- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ U_ n e. NN A C_ U. ran ( (,) o. H ) ) -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) |
110 |
31 108 109
|
syl2anc |
|- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) |
111 |
|
fzfi |
|- ( 1 ... j ) e. Fin |
112 |
|
elfznn |
|- ( w e. ( 1 ... j ) -> w e. NN ) |
113 |
|
ffvelrn |
|- ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( J ` w ) e. ( NN X. NN ) ) |
114 |
|
xp1st |
|- ( ( J ` w ) e. ( NN X. NN ) -> ( 1st ` ( J ` w ) ) e. NN ) |
115 |
|
nnre |
|- ( ( 1st ` ( J ` w ) ) e. NN -> ( 1st ` ( J ` w ) ) e. RR ) |
116 |
113 114 115
|
3syl |
|- ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( 1st ` ( J ` w ) ) e. RR ) |
117 |
21 112 116
|
syl2an |
|- ( ( ph /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) |
118 |
117
|
ralrimiva |
|- ( ph -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) |
119 |
118
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) |
120 |
|
fimaxre3 |
|- ( ( ( 1 ... j ) e. Fin /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) |
121 |
111 119 120
|
sylancr |
|- ( ( ph /\ j e. NN ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) |
122 |
|
fllep1 |
|- ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) |
123 |
122
|
ad2antlr |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x <_ ( ( |_ ` x ) + 1 ) ) |
124 |
117
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) |
125 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x e. RR ) |
126 |
|
flcl |
|- ( x e. RR -> ( |_ ` x ) e. ZZ ) |
127 |
126
|
peano2zd |
|- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. ZZ ) |
128 |
127
|
zred |
|- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) |
129 |
128
|
ad2antlr |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( |_ ` x ) + 1 ) e. RR ) |
130 |
|
letr |
|- ( ( ( 1st ` ( J ` w ) ) e. RR /\ x e. RR /\ ( ( |_ ` x ) + 1 ) e. RR ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
131 |
124 125 129 130
|
syl3anc |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
132 |
123 131
|
mpan2d |
|- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( 1st ` ( J ` w ) ) <_ x -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
133 |
132
|
ralimdva |
|- ( ( ph /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
134 |
133
|
adantlr |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
135 |
|
simpll |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ph ) |
136 |
135 3
|
sylan |
|- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ RR ) |
137 |
135 4
|
sylan |
|- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
138 |
135 5
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> sup ( ran T , RR* , < ) e. RR ) |
139 |
135 6
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> B e. RR+ ) |
140 |
135 10
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> J : NN -1-1-onto-> ( NN X. NN ) ) |
141 |
135 11
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
142 |
135 12
|
sylan |
|- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
143 |
135 13
|
sylan |
|- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
144 |
|
simplr |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> j e. NN ) |
145 |
127
|
ad2antrl |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( ( |_ ` x ) + 1 ) e. ZZ ) |
146 |
|
simprr |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) |
147 |
1 2 136 137 138 139 7 8 9 140 141 142 143 144 145 146
|
ovoliunlem1 |
|- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
148 |
147
|
expr |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
149 |
134 148
|
syld |
|- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
150 |
149
|
rexlimdva |
|- ( ( ph /\ j e. NN ) -> ( E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
151 |
121 150
|
mpd |
|- ( ( ph /\ j e. NN ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
152 |
151
|
ralrimiva |
|- ( ph -> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
153 |
|
ffn |
|- ( U : NN --> ( 0 [,) +oo ) -> U Fn NN ) |
154 |
|
breq1 |
|- ( z = ( U ` j ) -> ( z <_ ( sup ( ran T , RR* , < ) + B ) <-> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
155 |
154
|
ralrn |
|- ( U Fn NN -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
156 |
31 33 153 155
|
4syl |
|- ( ph -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
157 |
152 156
|
mpbird |
|- ( ph -> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) |
158 |
|
supxrleub |
|- ( ( ran U C_ RR* /\ ( sup ( ran T , RR* , < ) + B ) e. RR* ) -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
159 |
37 42 158
|
syl2anc |
|- ( ph -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
160 |
157 159
|
mpbird |
|- ( ph -> sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
161 |
18 39 42 110 160
|
xrletrd |
|- ( ph -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + B ) ) |