Metamath Proof Explorer


Theorem ovoliunlem2

Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T=seq1+G
ovoliun.g G=nvol*A
ovoliun.a φnA
ovoliun.v φnvol*A
ovoliun.r φsupranT*<
ovoliun.b φB+
ovoliun.s S=seq1+absFn
ovoliun.u U=seq1+absH
ovoliun.h H=kF1stJk2ndJk
ovoliun.j φJ:1-1 onto×
ovoliun.f φF:2
ovoliun.x1 φnAran.Fn
ovoliun.x2 φnsupranS*<vol*A+B2n
Assertion ovoliunlem2 φvol*nAsupranT*<+B

Proof

Step Hyp Ref Expression
1 ovoliun.t T=seq1+G
2 ovoliun.g G=nvol*A
3 ovoliun.a φnA
4 ovoliun.v φnvol*A
5 ovoliun.r φsupranT*<
6 ovoliun.b φB+
7 ovoliun.s S=seq1+absFn
8 ovoliun.u U=seq1+absH
9 ovoliun.h H=kF1stJk2ndJk
10 ovoliun.j φJ:1-1 onto×
11 ovoliun.f φF:2
12 ovoliun.x1 φnAran.Fn
13 ovoliun.x2 φnsupranS*<vol*A+B2n
14 3 ralrimiva φnA
15 iunss nAnA
16 14 15 sylibr φnA
17 ovolcl nAvol*nA*
18 16 17 syl φvol*nA*
19 11 adantr φkF:2
20 f1of J:1-1 onto×J:×
21 10 20 syl φJ:×
22 21 ffvelcdmda φkJk×
23 xp1st Jk×1stJk
24 22 23 syl φk1stJk
25 19 24 ffvelcdmd φkF1stJk2
26 elovolmlem F1stJk2F1stJk:2
27 25 26 sylib φkF1stJk:2
28 xp2nd Jk×2ndJk
29 22 28 syl φk2ndJk
30 27 29 ffvelcdmd φkF1stJk2ndJk2
31 30 9 fmptd φH:2
32 eqid absH=absH
33 32 8 ovolsf H:2U:0+∞
34 frn U:0+∞ranU0+∞
35 31 33 34 3syl φranU0+∞
36 icossxr 0+∞*
37 35 36 sstrdi φranU*
38 supxrcl ranU*supranU*<*
39 37 38 syl φsupranU*<*
40 6 rpred φB
41 5 40 readdcld φsupranT*<+B
42 41 rexrd φsupranT*<+B*
43 eliun znAnzA
44 12 3adant3 φnzAAran.Fn
45 3 3adant3 φnzAA
46 11 ffvelcdmda φnFn2
47 elovolmlem Fn2Fn:2
48 46 47 sylib φnFn:2
49 48 3adant3 φnzAFn:2
50 ovolfioo AFn:2Aran.FnzAj1stFnj<zz<2ndFnj
51 45 49 50 syl2anc φnzAAran.FnzAj1stFnj<zz<2ndFnj
52 44 51 mpbid φnzAzAj1stFnj<zz<2ndFnj
53 simp3 φnzAzA
54 rsp zAj1stFnj<zz<2ndFnjzAj1stFnj<zz<2ndFnj
55 52 53 54 sylc φnzAj1stFnj<zz<2ndFnj
56 simpl1 φnzAjφ
57 f1ocnv J:1-1 onto×J-1:×1-1 onto
58 f1of J-1:×1-1 ontoJ-1:×
59 56 10 57 58 4syl φnzAjJ-1:×
60 simpl2 φnzAjn
61 simpr φnzAjj
62 59 60 61 fovcdmd φnzAjnJ-1j
63 2fveq3 k=nJ-1j1stJk=1stJnJ-1j
64 63 fveq2d k=nJ-1jF1stJk=F1stJnJ-1j
65 2fveq3 k=nJ-1j2ndJk=2ndJnJ-1j
66 64 65 fveq12d k=nJ-1jF1stJk2ndJk=F1stJnJ-1j2ndJnJ-1j
67 fvex F1stJnJ-1j2ndJnJ-1jV
68 66 9 67 fvmpt nJ-1jHnJ-1j=F1stJnJ-1j2ndJnJ-1j
69 62 68 syl φnzAjHnJ-1j=F1stJnJ-1j2ndJnJ-1j
70 df-ov nJ-1j=J-1nj
71 70 fveq2i JnJ-1j=JJ-1nj
72 56 10 syl φnzAjJ:1-1 onto×
73 60 61 opelxpd φnzAjnj×
74 f1ocnvfv2 J:1-1 onto×nj×JJ-1nj=nj
75 72 73 74 syl2anc φnzAjJJ-1nj=nj
76 71 75 eqtrid φnzAjJnJ-1j=nj
77 76 fveq2d φnzAj1stJnJ-1j=1stnj
78 vex nV
79 vex jV
80 78 79 op1st 1stnj=n
81 77 80 eqtrdi φnzAj1stJnJ-1j=n
82 81 fveq2d φnzAjF1stJnJ-1j=Fn
83 76 fveq2d φnzAj2ndJnJ-1j=2ndnj
84 78 79 op2nd 2ndnj=j
85 83 84 eqtrdi φnzAj2ndJnJ-1j=j
86 82 85 fveq12d φnzAjF1stJnJ-1j2ndJnJ-1j=Fnj
87 69 86 eqtrd φnzAjHnJ-1j=Fnj
88 87 fveq2d φnzAj1stHnJ-1j=1stFnj
89 88 breq1d φnzAj1stHnJ-1j<z1stFnj<z
90 87 fveq2d φnzAj2ndHnJ-1j=2ndFnj
91 90 breq2d φnzAjz<2ndHnJ-1jz<2ndFnj
92 89 91 anbi12d φnzAj1stHnJ-1j<zz<2ndHnJ-1j1stFnj<zz<2ndFnj
93 92 biimprd φnzAj1stFnj<zz<2ndFnj1stHnJ-1j<zz<2ndHnJ-1j
94 2fveq3 m=nJ-1j1stHm=1stHnJ-1j
95 94 breq1d m=nJ-1j1stHm<z1stHnJ-1j<z
96 2fveq3 m=nJ-1j2ndHm=2ndHnJ-1j
97 96 breq2d m=nJ-1jz<2ndHmz<2ndHnJ-1j
98 95 97 anbi12d m=nJ-1j1stHm<zz<2ndHm1stHnJ-1j<zz<2ndHnJ-1j
99 98 rspcev nJ-1j1stHnJ-1j<zz<2ndHnJ-1jm1stHm<zz<2ndHm
100 62 93 99 syl6an φnzAj1stFnj<zz<2ndFnjm1stHm<zz<2ndHm
101 100 rexlimdva φnzAj1stFnj<zz<2ndFnjm1stHm<zz<2ndHm
102 55 101 mpd φnzAm1stHm<zz<2ndHm
103 102 rexlimdv3a φnzAm1stHm<zz<2ndHm
104 43 103 biimtrid φznAm1stHm<zz<2ndHm
105 104 ralrimiv φznAm1stHm<zz<2ndHm
106 ovolfioo nAH:2nAran.HznAm1stHm<zz<2ndHm
107 16 31 106 syl2anc φnAran.HznAm1stHm<zz<2ndHm
108 105 107 mpbird φnAran.H
109 8 ovollb H:2nAran.Hvol*nAsupranU*<
110 31 108 109 syl2anc φvol*nAsupranU*<
111 fzfi 1jFin
112 elfznn w1jw
113 ffvelcdm J:×wJw×
114 xp1st Jw×1stJw
115 nnre 1stJw1stJw
116 113 114 115 3syl J:×w1stJw
117 21 112 116 syl2an φw1j1stJw
118 117 ralrimiva φw1j1stJw
119 118 adantr φjw1j1stJw
120 fimaxre3 1jFinw1j1stJwxw1j1stJwx
121 111 119 120 sylancr φjxw1j1stJwx
122 fllep1 xxx+1
123 122 ad2antlr φxw1jxx+1
124 117 adantlr φxw1j1stJw
125 simplr φxw1jx
126 flcl xx
127 126 peano2zd xx+1
128 127 zred xx+1
129 128 ad2antlr φxw1jx+1
130 letr 1stJwxx+11stJwxxx+11stJwx+1
131 124 125 129 130 syl3anc φxw1j1stJwxxx+11stJwx+1
132 123 131 mpan2d φxw1j1stJwx1stJwx+1
133 132 ralimdva φxw1j1stJwxw1j1stJwx+1
134 133 adantlr φjxw1j1stJwxw1j1stJwx+1
135 simpll φjxw1j1stJwx+1φ
136 135 3 sylan φjxw1j1stJwx+1nA
137 135 4 sylan φjxw1j1stJwx+1nvol*A
138 135 5 syl φjxw1j1stJwx+1supranT*<
139 135 6 syl φjxw1j1stJwx+1B+
140 135 10 syl φjxw1j1stJwx+1J:1-1 onto×
141 135 11 syl φjxw1j1stJwx+1F:2
142 135 12 sylan φjxw1j1stJwx+1nAran.Fn
143 135 13 sylan φjxw1j1stJwx+1nsupranS*<vol*A+B2n
144 simplr φjxw1j1stJwx+1j
145 127 ad2antrl φjxw1j1stJwx+1x+1
146 simprr φjxw1j1stJwx+1w1j1stJwx+1
147 1 2 136 137 138 139 7 8 9 140 141 142 143 144 145 146 ovoliunlem1 φjxw1j1stJwx+1UjsupranT*<+B
148 147 expr φjxw1j1stJwx+1UjsupranT*<+B
149 134 148 syld φjxw1j1stJwxUjsupranT*<+B
150 149 rexlimdva φjxw1j1stJwxUjsupranT*<+B
151 121 150 mpd φjUjsupranT*<+B
152 151 ralrimiva φjUjsupranT*<+B
153 ffn U:0+∞UFn
154 breq1 z=UjzsupranT*<+BUjsupranT*<+B
155 154 ralrn UFnzranUzsupranT*<+BjUjsupranT*<+B
156 31 33 153 155 4syl φzranUzsupranT*<+BjUjsupranT*<+B
157 152 156 mpbird φzranUzsupranT*<+B
158 supxrleub ranU*supranT*<+B*supranU*<supranT*<+BzranUzsupranT*<+B
159 37 42 158 syl2anc φsupranU*<supranT*<+BzranUzsupranT*<+B
160 157 159 mpbird φsupranU*<supranT*<+B
161 18 39 42 110 160 xrletrd φvol*nAsupranT*<+B