Metamath Proof Explorer


Theorem 2ndcsep

Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis 2ndcsep.1 X=J
Assertion 2ndcsep J2nd𝜔x𝒫XxωclsJx=X

Proof

Step Hyp Ref Expression
1 2ndcsep.1 X=J
2 is2ndc J2nd𝜔bTopBasesbωtopGenb=J
3 vex bV
4 difss bb
5 ssdomg bVbbbb
6 3 4 5 mp2 bb
7 simpr bTopBasesbωbω
8 domtr bbbωbω
9 6 7 8 sylancr bTopBasesbωbω
10 eldifsn ybyby
11 n0 yzzy
12 elunii zyybzb
13 simpl zyybzy
14 12 13 jca zyybzbzy
15 14 expcom ybzyzbzy
16 15 eximdv ybzzyzzbzy
17 16 imp ybzzyzzbzy
18 df-rex zbzyzzbzy
19 17 18 sylibr ybzzyzbzy
20 11 19 sylan2b ybyzbzy
21 10 20 sylbi ybzbzy
22 21 rgen ybzbzy
23 vuniex bV
24 eleq1 z=fyzyfyy
25 23 24 axcc4dom bωybzbzyff:bbybfyy
26 9 22 25 sylancl bTopBasesbωff:bbybfyy
27 frn f:bbranfb
28 27 ad2antrl bTopBasesbωf:bbybfyyranfb
29 vex fV
30 29 rnex ranfV
31 30 elpw ranf𝒫branfb
32 28 31 sylibr bTopBasesbωf:bbybfyyranf𝒫b
33 omelon ωOn
34 7 adantr bTopBasesbωf:bbybfyybω
35 ondomen ωOnbωbdomcard
36 33 34 35 sylancr bTopBasesbωf:bbybfyybdomcard
37 ssnum bdomcardbbbdomcard
38 36 4 37 sylancl bTopBasesbωf:bbybfyybdomcard
39 ffn f:bbfFnb
40 39 ad2antrl bTopBasesbωf:bbybfyyfFnb
41 dffn4 fFnbf:bontoranf
42 40 41 sylib bTopBasesbωf:bbybfyyf:bontoranf
43 fodomnum bdomcardf:bontoranfranfb
44 38 42 43 sylc bTopBasesbωf:bbybfyyranfb
45 9 adantr bTopBasesbωf:bbybfyybω
46 domtr ranfbbωranfω
47 44 45 46 syl2anc bTopBasesbωf:bbybfyyranfω
48 tgcl bTopBasestopGenbTop
49 48 ad2antrr bTopBasesbωf:bbybfyytopGenbTop
50 unitg bVtopGenb=b
51 50 elv topGenb=b
52 51 eqcomi b=topGenb
53 52 clsss3 topGenbTopranfbclstopGenbranfb
54 49 28 53 syl2anc bTopBasesbωf:bbybfyyclstopGenbranfb
55 ne0i xyy
56 55 anim2i ybxyyby
57 56 10 sylibr ybxyyb
58 fnfvelrn fFnbybfyranf
59 39 58 sylan f:bbybfyranf
60 inelcm fyyfyranfyranf
61 60 expcom fyranffyyyranf
62 59 61 syl f:bbybfyyyranf
63 62 ex f:bbybfyyyranf
64 63 a2d f:bbybfyyybyranf
65 57 64 syl7 f:bbybfyyybxyyranf
66 65 exp4a f:bbybfyyybxyyranf
67 66 ralimdv2 f:bbybfyyybxyyranf
68 67 imp f:bbybfyyybxyyranf
69 68 ad2antlr bTopBasesbωf:bbybfyyxbybxyyranf
70 eqidd bTopBasesbωf:bbybfyyxbtopGenb=topGenb
71 52 a1i bTopBasesbωf:bbybfyyxbb=topGenb
72 simplll bTopBasesbωf:bbybfyyxbbTopBases
73 28 adantr bTopBasesbωf:bbybfyyxbranfb
74 simpr bTopBasesbωf:bbybfyyxbxb
75 70 71 72 73 74 elcls3 bTopBasesbωf:bbybfyyxbxclstopGenbranfybxyyranf
76 69 75 mpbird bTopBasesbωf:bbybfyyxbxclstopGenbranf
77 54 76 eqelssd bTopBasesbωf:bbybfyyclstopGenbranf=b
78 breq1 x=ranfxωranfω
79 fveqeq2 x=ranfclstopGenbx=bclstopGenbranf=b
80 78 79 anbi12d x=ranfxωclstopGenbx=branfωclstopGenbranf=b
81 80 rspcev ranf𝒫branfωclstopGenbranf=bx𝒫bxωclstopGenbx=b
82 32 47 77 81 syl12anc bTopBasesbωf:bbybfyyx𝒫bxωclstopGenbx=b
83 26 82 exlimddv bTopBasesbωx𝒫bxωclstopGenbx=b
84 unieq topGenb=JtopGenb=J
85 84 52 1 3eqtr4g topGenb=Jb=X
86 85 pweqd topGenb=J𝒫b=𝒫X
87 fveq2 topGenb=JclstopGenb=clsJ
88 87 fveq1d topGenb=JclstopGenbx=clsJx
89 88 85 eqeq12d topGenb=JclstopGenbx=bclsJx=X
90 89 anbi2d topGenb=JxωclstopGenbx=bxωclsJx=X
91 86 90 rexeqbidv topGenb=Jx𝒫bxωclstopGenbx=bx𝒫XxωclsJx=X
92 83 91 syl5ibcom bTopBasesbωtopGenb=Jx𝒫XxωclsJx=X
93 92 impr bTopBasesbωtopGenb=Jx𝒫XxωclsJx=X
94 93 rexlimiva bTopBasesbωtopGenb=Jx𝒫XxωclsJx=X
95 2 94 sylbi J2nd𝜔x𝒫XxωclsJx=X